BIO-ARGO FLOATS IN THE ARCTIC OCEA

Prepared by: C. Marec, E. Leymarie, J. Luis-Lagunas, C. Penkerch, E. Rehm

Presented by: M. Babin

US Deptrof State Geographer © 2012 Coogle Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2012 MapLink/Tele Atlas

50

Google⁻earth

Altitude 8790.65 km 🔘

To understand the dynamics of the phytoplankton spring bloom in Arctic

Where?

Why the Baffin Bay? : Ice edge blooms are systematically observed there. And, observations by Ocean Remote Sensing show that the spring blooms occur now 50 days earlier than in1997.

Perrette et al. 2011)

Sea ice

How?

Provor CTS5* (CTD O2**) + additional payload:

- ✓ SUNA (nitrates)
- OCR 504 (Ed 3 wavelengths: 380, 410, 490nm) + PAR (400-700nm)
- FLBBCD (fluo chla, fluo CDOM, backscattering)
 - * New generation of NKE float
 - ** Aanderaa Optode

Credit LOV

lce avoidance

Challenge : sea-ice detection

Main issue in icy waters: detecting ice if present, to postpone the surfacing of the floats.

Sea-ice detection techniques: complementary, each contributing to different situations and ranges.

- ISA (Ice Sensing Algorithm)
- Active acoustic technique
- Optical technique

Credit AWI

Ice detection

- **ISA:** Ice Sensing Algorithm (Klatt et al 2007) adapted to Baffin Bay conditions to detect sea ice
- Active acoustic (altimeter range 100m) for detection of icebergs and thick sea-ice
- Optical sensor detection (close range: 20m) to detect thin sea-ice

Ice detection

An ice layer as thin as 2 cm. (0.81 in.) prevents the float from surfacing. The Floats has only a 500-600 g pull when ascending.

ISA: Ice Sensing Algorithm(Klatt et al 2007) Adapted to Baffin Bay conditions. Dedicated to sea-ice detection

CTD profiles used to adapte ISA to Baffin bay

FONDATION CANADIENNI

POUR L'INNOVATION

CANADA FOUNDATION

FOR INNOVATION

Ice detection by laser depolarization

- Sea ice depolarizes light.
- Ice detection system : Linearly polarized source (500 mW @ 532 nm)
 + Optical detector (polarizing beamsplitter)
- Optical detector :Two amplified photodiodes are used to receive the vertical (Ep) and horizontal (Es) components separated by the polarizing beamsplitter.
- The ratio Es/Ep indicates the presence or absence of sea ice in the surface

Previous Results

Next on the timeline

- Find and set an efficient ice detection depth for BioArgo floats.
- Reduce weight (currently the housings are made of stainless steel).

ENHANCED FEATURES:

Sea-ice detection will benefit of enhanced features of the new generation of floats, designed under the NAOS project especially using the **feedback between the sensors and the vector** (LOV).

Use of iridium communication:

- Shortened surfacing time (high volume of data)
- **Two-way** iridium communication modify the schedule by remote operator
- Storage of data in case no surfacing is possible for transmission
- Modification of the mission without communication (date criteria)
- Protective frame for sensors

TESTS

Tests: general functioning in the Med sea : 10 days deployment last February

Tests: behaviour of the float and sensors in cold conditions during 2 experiments

•During wintertime (feb 2015) in a lake close to Quebec City - freshwater – in a captive mode •Profiling to and from 8 m

•All sensors were active during ascension & performed well

BioArgo float tests during GreenEdge 2015 Qikiqtarjuaq, Nunavut

A BioArgo float was deployed on a mooring line during the Green Edge 2015 Ice camp campaign.

FOR INNOVATION

BioArgo float tests during GreenEdge 2015 Qikiqtarjuaq, Nunavut

Environment

- Water temperature : -1.7 deg C
- Surface temperature : -20 to -30 deg. C
- Snow layer : 40 cm
- Ice thickness : 110 cm
- Bottom depth : 360 m

Tests:

- Profiled to and from 80 m
- All sensors were active during ascension and performed well

Planned deployments

CANADA FOUNDATION

FOR INNOVATION

Upcoming deployments: summer 2015: 4 Pro-ice floats (stations BB4, BB2)

Upcoming deployments: 20 floats (12 NAOS + 8 FCI)

✓ Summer 2015: 4 Pro-ice floats (stations BB4, BB2)

✓ Summer 2016 / summer 2017: 16 Pro-ice floats

1. Reset Zp = 1000m every 21d

Notes: Vertical excursions are greatly reduced. Duration is ~ 580 d. Launch location makes a big difference. BB4 = 50% coast crashes.

2. NAOS Mission Schedule, 1000m

BB4

• tbs

Thanks to Jinshan Xu, DFO, St. Johns for getting this all started.

Phytoplankton activity in the Greenland Sea*: Bio-float observations in ice-covered waters

P. Matrai¹, M. Steele², D.Swift², S. Riser², K. Johnson³ and J. Nutt¹ ¹Bigelow Laboratory for Ocean Sciences, ²University of Washington, ³MBARI

Arctic ARGO bio-floats survive stratification* and sea ice! *Just not Chukchi Sea stratification

T, S, NO₃, O₂, fluorescence, backscatter => chl, POC, PP, NCP

Acknowledgements: We gratefully acknowledge support from NASA OBB. A heartfelt thanks to F. Bahr and R. Pickart (WHOI), A. Meiton (Swedish Polar Research Secretariat) and S. Olsen (Danish Meteorological Institute) for assistance with float deployments.

Lagrangian particle simulations

- Release ~45 particles at two CGCS Amundsen stations: BB2, BB4
- Three drift depths: 500 m, 750m, 1000m
- Three profiling scenarios:
 - 1. No profiling (pure Lagrangian drift), 638 day sim
 - 2. Profiling every 21 days
 - 3. Profiling according to proposed NAOS mission
- Iteratively remove particles from the initial set that crash into the coast, i.e., particle depth > bottom depth. (Ariane crashes when this happens.)
 - Note that these « crashes » represent the real likelihood that a float may bump or touch bottom during drift or profiling due to the steep bathymetry of Baffin Bay.
- Thanks to Jinshan Xu, DFO, St. Johns for getting this all started.

