

Status of MERIS Calibration for 4th reprocessing

Ludovic Bourg

International Ocean Colour Science Meeting

San Francisco, 18 June 2015

- Instrument overview
- In-flight calibration hardware
- Overall calibration strategy
 - * 3rd reprocessing radiometric validation results

Calibration processing chain

- * Radiometric model
- Processing chain
- Why a temporal model?
- ✤ Gain modelling

Some results from whole mission reanalysis

- Reference diffuser stability
- Impact on gain drift determination

Conclusion

Instrument overview

- Push-broom imaging spectrometer, 5 fan-arranged cameras
- CCD sensing with [390,1040] nm spectral range
- Up to 45 programmable µchannels relaxed into 15 channels

In-flight Calibration hardware

- Calibration wheel with 5 positions:
- Shutter: dark offset (calibration zero), before every diffuser acquisition
- Radiometric diffuser: calibration gains (every 2 weeks)
- Reference radiometric diffuser: ageing of nominal diffuser (every 3 months)
- Spectral diffuser: spectral calibration at 2 wavelengths (every 3 months @520nm, every 6 months @ 408nm)
- All calibrations near orbital South pole, where Sun aligns with baffle

Overall Calibration Strategy

DC = Dark Calibration RC = Radiometric Calibration WC = Wavelength Calibration

Orbital South Pole

Self standing absolute calibration for the EO processing chain

Validated by vicarious methods

3rd **RP Radiometry Validation results**

(from B. Fougnie, CNES, MERIS QWG, June 2013)

General comparison of all results from various methods

- ✦ Good consistency between all results for all methods
- Very good accordance for
 - » 412-443-490-510 within 1% between the 3 methods
 - » 753-778-865-885 within 0.5% between the 2 methods

Radiometric model

$$X_{b,k,m,t} = NL_{b,m} \begin{bmatrix} A_{b,k,m}^{0} \cdot (L_{b,k,m,t} + SL_{b,k,m,t} (L_{*,*,*,*})) + \\ Sm_{b,k,m,t} (L_{*,k,m,*} + SL_{*,k,m,*} (L_{*,*,*,*})) + \\ g_{C}(T_{t}^{CCD}) \cdot C_{b,k,m}^{0} \end{bmatrix} + \varepsilon$$

Where:

- b = band, k / m = pixel / camera, t = time, (* = whole/partial domain)
- X_{b,k,m,t} is the OLCI raw sample
- NL_{b,m} is a non-linear function
- T^{CCD}(t) is the temperature of the CCDs
- $g_C(T^{CCD})$ is a dimensionless temperature correction function
- A⁰_{b,k,m} the "absolute radiometric gain" in counts/radiance unit
- L_{b,k,m,t} the spectral radiance distribution in front of OLCI
- $Sm_{b,k,m,t}$ the smear signal, due to continuous sensing of light by OLCI
- C⁰_{b,k,m} the calibrated dark signal (possibly including an on-board compensation)
- SL_{b,k,m,t} a linear operator representing the stray light contribution to the signal
- ε is a random process representative of the noise and measurement errors.

Radiometric model applies to Calibration measurements

$$\begin{split} X_{b,k,m,t}^{Cal} &= NL_{b,m} \begin{bmatrix} A_{b,k,m}^{0} \cdot \left(L_{b,k,m,t}^{Cal} + SL_{b,k,m,t} (L_{*,*,*,*}^{Cal}) \right) + \\ Sm_{b,k,m,t} (L_{*,k,m,*}^{Cal} + SL_{*,k,m,*} (L_{*,*,*,*}^{Cal})) + \\ g_{C} (T_{t}^{CCD}) \cdot C_{b,k,m}^{0} \end{bmatrix} + \mathcal{E} \\ A_{b,k,m}^{0} &= \left\langle \frac{NL_{b,m}^{-1} \left(X_{b,k,m,t}^{Cal} \right) - Sm_{b,k,m,t} (L_{*,k,m,*}^{Cal} + SL_{b,k,m,t}^{Cal}) - g_{C} (T_{t}^{CCD}) \cdot C_{b,k,m}^{0} \\ \left(L_{b,k,m,t}^{Cal} + SL_{b,k,m,t}^{Cal} \right) \right) \right\rangle \\ \end{split}$$

- X^{Cal} from Sun diffuser measurements
- C⁰ from dedicated measurements (with shutter)
- Sm from dedicated band (virtual, lit only during CCD frame transfer)
- L^{cal} from characterised/modelled diffuser BRDF + in-flight geometry + E₀ at MERIS bands & pixels (from Spectral characterisation/model)
- SL from L + characterised/modelled convolution kernels
- gC from characterisation
- NL⁻¹ from characterisation

t∈{cal

Calibration chain summary

Calibration chain summary (short term)

ACRI-ST | Author | Meeting title | Date | Slide 10 / X

Why using a Gain model

Allows smooth long-term trends correction

BRDF model does not fully capture dependency with Sun azimuth (±0.5%)

On-ground: BRDF model residuals for 2 extreme SAA In-flight: Relative gain variations: extreme SAA gains over central one

Selecting "best" SAA ensures better accuracy.

ACRI-ST | L Bourg | IOCS 2015 | 18 June 2015 | Slide 11

- Model is basically G(t) = G(t₀)·f(t-t₀)
- Correcting Diffuser 1 (and 2!) for ageing allows to measure consistent gains from both diffusers
- Gain long-term drift (Instrument Degradation) captured from D1 (more data, good spread in SAA domain)
- Validated on D2
- Gain at reference time can be derived from D1 or D2
 - D1 pros: minimize speckle
 - D2 pros: minimize discrepancies at camera interfaces

Stability with time and view angle verified over Antarctica

Some results, 1

- Ageing correction is essential for accurate gain drift modelling
- Assumption: ageing proportional to cumulated exposure (D2 exposed ~10 times less)
- Ageing measured by evolution of D1/D2 ratio, shows up to ~2% variation (in the blue)

➔ D2 ageing no longer negligible

Some results, 2

Neglecting D2 ageing has a small absolute impact (<0.2%) but degrades overall consistency: D1 and D2 do not "see" the same instrument degradation anymore: example of camera 2.

Some results, 3

Still work in progress, sorry!

Here you should see an illustration of the impact of ageing revision 4th RP model, in particular over the 3rd RP extrapolation period.

ACRI-ST | L Bourg | IOCS 2015 | 18 June 2015 | Slide 15

Conclusion

Well characterized on-board diffusers are extremely accurate calibration "sources".

As for any space borne item ageing is a concern and shall be closely monitored.

A reference diffuser has proven to be a reliable monitoring device

- unfrequently exposed diffusers seem to degrade fairly linearly
- time sampling is important to minimize geometry effects
- But accurate ageing rate determination requires time

Thank you for your attention