What are the challenges and opportunities for using ocean colour data for ecological forecasting?

Marion Gehlen (IPSL/LSCE)

marion.gehlen@lsce.ipsl.fr

anthropogenic climate change

Laboratoire des sciences du climat & de l'environnement

Institut Pierre

imon Laplace

FIG. 2. Schematic illustrating progression from initial value problems with daily weather forecasts at one end, and multidecadal to century projections as a forced boundary condition problem at the other, with seasonal and decadal prediction in between.

Forecasting ocean 'weather' = initialization problem

Example of forecasting system

Forecasting ocean 'weather' = initialization problem

Need of "integrated systems"

- data streams: physical/biogeochemical
- data assimilation to constrain ocean physics and biogeochemistry
- coupled biogeochemical ocean general circulation model

Forecasting ocean 'weather' = initialization problem

Need of "integrated systems"

- data streams: physical/biogeochemical need for :
 - NRT high quality data streams
 - delayed delivery of consistent time series for reanalysis

Main characteristics of selected GODAE/GOV forecasting systems

System	Ocean model	Biogeo- chemical	Configuration	Data assimilation scheme		Assimilated data		System status
		model		PHYS ⁽¹⁾	BGC ⁽²⁾	PHYS	BGC	
FOAM-HadOCC	NEMO3.2- CICE	HadOCC	global, 1/4°cos(lat) resolution, 75 vertical layers	3D-Var	analysis correction + multi- variate balancing	satellite SLA, SST, sea ice, in situ SST, T/S profiles	chlorophyll-a or pCO ₂	pre-operational (BGC) operational (PHYS)
FOAM-ERSEM	NEMO3.2	ERSEM	Atlantic Margin, 7km resolution, 32 hybrid vertical layers	analysis correction	no	SST	no	operational
TOPAZ- NORWECOM	HYCOM	NORWECOM	North Atlantic and Arctic (Bering Strait), 50 km resolution 28 vertical layers	DEnKF	DEnKF & Gaussian ana- morphosis	satellite SLA, SST, sea ice	chlorophyll-a	pre-operational
TOPAZ- NORWECOM	HYCOM	NORWECOM	same but 12 km resolution	DEnKF	no	satellite SLA, SST, sea ice, in situ T/S profiles	no	operational
MERCATOR- OCEAN/ BIOMER	NEMO 3.1	PISCES (NEMO3.2) off-line coupled ⁽³⁾	global, 1/4°cos(lat) resolution, 50 vertical layers	SAM2V1	no	satellite SST, SSH, in situ T/S profiles	no	operational
MFS	NEMO3.4 +waves+ atm.press ure	BFM (OPATM) off-line coupled ⁽³⁾	Mediterranean Sea (1/16°), 72 vertical layers	3D-Var	3D-VAR	Satellite SSH, in situ T/S profiles	chlorophyll-a	operational
CANOPA-GSBM	OPA9- LIM2	GSBM	East-Canadian shelf (1/12°), 46 vertical layers	no	no	no	no	non-assimilative hindcast

⁽¹⁾PHYS = physics; ⁽²⁾BGC = biogeochemistry; ⁽³⁾ biogeochemical model coupled off-line (run sequential) to physical model;

Main characteristics of selected GODAE/GOV forecasting systems

System	Ocean model	Biogeo- chemical model	Configuration	Data assimilation scheme		Assimilated data		System status
				PHYS ⁽¹⁾	BGC ⁽²⁾	PHYS	BGC	
FOAM-HadOCC	NEMO3.2- CICE	HadOCC	global, 1/4°cos(lat)	3D-Var	analysis correction +	satellite SLA, SST, sea ice,	chlorophyll-a or	pre-operational (BGC)
								(PHYS)
FOAM-ERSI								erational
	hio	aeoch	emical/	ecolo	nical f	oreca	stina	
TOPAZ- NORWECO	DIO	geoen	cinical		gicari	oreca	sting	perational
				=				
TOPAZ- NORWECO	a	a youn	g, but r	apidly	v evolv	ving fi	eld	erational
MERCATO OCEAN/								erational
DIOMER		coupled ⁽³⁾	50 vertical layers					
MFS	NEMO3.4 +waves+ atm.press ure	BFM (OPATM) off-line coupled ⁽³⁾	Mediterranean Sea (1/16°), 72 vertical layers	3D-Var	3D-VAR	Satellite SSH, in situ T/S profiles	chlorophyll-a	operational
CANOPA-GSBM	OPA9- LIM2	GSBM	East-Canadian shelf (1/12°), 46 vertical layers	no	no	no	no	non-assimilative hindcast

⁽¹⁾PHYS = physics; ⁽²⁾BGC = biogeochemistry; ⁽³⁾ biogeochemical model coupled off-line (run sequential) to physical model;

Ocean colour products for

 ⇒ applications in operational oceanography : model guidance / data assimilation management of living marine ressources
 ⇒ applications in biogeochemical research : model evaluation process studies

CORS Current operational monitoring capabilities for the « green » ocean at Mercator-Océan

· Context: transition towards Copernicus Marine Service (delegated to Mercator-Ocean for a start April 2015)

Objective: to provide reanalyses, analyses and real-time forecasts (global + regional) of
 (i) the physical ocean state (T/S, currents, mixed layer ...) at high spatial effective resolution (~ 10 to 50 km);
 (ii) the biogeochemical state (nutrients, phytoplankton, chlorophyll ...) at best possible resolution.

Current capability:

(i) *Physics*: global physical ocean at 1/12° (target 1/36° in 2020+); european seas 1/36° (daily updates)
(ii) *Biology*: global biological state at 1/4° (weekly updates) + regional focus IBI (target 1/12° in 2020)

Data needs to reach 2020+ target (in addition to SST, SLA and in situ T/S data already assimilated into
physical components): eddy-resolving ocean color maps in European seas, daily updates, for assimilation.

contact: Pierre.Brasseur@legi.grenoble-inp.fr

Depth (m): 0 Run Date: 2014-11-26

CORS Current operational monitoring capabilities for the « green » ocean at Mercator-Océan

• Context: transition towards Copernicus Marine Service (delegated to Mercator-Ocean for a start April 2015)

Objective: to provide reanalyses, analyses and real-time forecasts (global + regional) of
 (i) the physical ocean state (T/S, currents, mixed layer ...) at high spatial effective resolution (~ 10 to 50 km);
 (ii) the biogeochemical state (nutrients, phytoplankton, chlorophyll ...) at best possible resolution.

Current capability:

(i) *Physics*: global physical ocean at 1/12° (target 1/36° in 2020+); european seas 1/36° (daily updates)
(ii) *Biology*: global biological state at 1/4° (weekly updates) + regional focus IBI (target 1/12° in 2020)

 Data needs to reach 2020+ target (in addition to SST, SLA and in situ T/S data already assimilated into physical components): eddy-resolving ocean color maps in European seas, daily updates, for assimilation.

CORS Current operational monitoring capabilities for the « green » ocean at Mercator-Océan

• Context: transition towards Copernicus Marine Service (delegated to Mercator-Ocean for a start April 2015)

Objective: to provide reanalyses, analyses and real-time forecasts (global + regional) of
 (i) the physical ocean state (T/S, currents, mixed layer ...) at high spatial effective resolution (~ 10 to 50 km);
 (ii) the biogeochemical state (nutrients, phytoplankton, chlorophyll ...) at best possible resolution.

Current capability:

(i) *Physics*: global physical ocean at 1/12° (target 1/36° in 2020+); european seas 1/36° (daily updates)
(ii) *Biology*: global biological state at 1/4° (weekly updates) + regional focus IBI (target 1/12° in 2020)

 Data needs to reach 2020+ target (in addition to SST, SLA and in situ T/S data already assimilated into physical components): eddy-resolving ocean color maps in European seas, daily updates, for assimilation.

CORS Assimilation of ocean colour <u>data product</u> into coupled physical-biological models

Current limitations in ocean colour products (e.g. weekly - monthly composites):

- Insufficient spatial resolution and repetitivity for assimilation into eddy-resolving models
- Inadaptation of assimilation schemes for incorporation of biogeochemistry

Required evolutions:

- · Assimilation schemes to be prepared to future OC products (e.g. from geostationary orbits)
- Methods for synergistic use of HRES satellite observations (colour, SST, SWOT altimetry)
- Extension to the coastal domain

RDM OCAPI 10/12/2014

contact: Pierre.Brasseur@legi.grenoble-inp.fr

Ocean colour products for

 \Rightarrow applications in operational oceanography:

Indonesian Sea operational « ecological » forecasting system

INDESO

INfrastructure DEvelopment

for Space Oceanography

INDESO

INfrastructure DEvelopment

for Space Oceanography

- Indonesia has the 6th largest EEZ in the world and fisheries generates US\$ 3.1 billions revenue and direct employment to 4 millions people (in 2004, source FAO)
- Vessel Monitoring System deployed in 2004; next steps are:
 - Eradicate illegal fishing (IUU)
 - Support sustainable management of stocks
 - Support sustainable development of aquaculture
 - Support coastal environmental protection

Integrated model suite

- Numerical models suite:
 ocean physics
 lower trophic levels
 & biogeochemistry
- prey fields
- predator populations
- Fed by satellite
- & in-situ observations
- Generation of forecasts

& analysis

data

=> fish stock management

operational global model ¼° weekly forecast (MERCATOR OCEAN) (assim. of physical data)

Mean temperature (°C) at 0.494025 m depth (20131231)

Tranchant et al., in prep

coupled Physicalbiogeochemical/ LTL model (NEMO/PISCES)

annual mean surface chlorophyll-a (mg Chl m⁻³) for year 2011

Gutknecht et al., 2015, GMDD

environmental forcings

Tranchant et al., 2015, GMDD

PISCES biogeochemical model (Aumont et al., 2015, GMDD)

NPP, oxygen, euphotic depth as forcings for M&HTL model (SEAPODYM)

Ocean colour products for

 \Rightarrow applications in operational oceanography :

management of living marine ressources

Predicting of Bluefin Tuna Feeding Habitat

Bluefin tuna Feeding habitat model

Top : geographical box 36°N-45°N; 70°W-56°W, bluefin tracks on model predicted feeding habitat.

Bottom : predicted Bluefin tuna habitat centred on 16 Oct 2002 ; zoom Gulf of Lyon with juveniles bluefin tuna schools (circles) identified the same week (Royer et al., 2004).

Feeding habitat prediction : ex. Bluefin tuna

Input :

- + physical variables from ocean re
 - analysis (GLORYS1V1, Mercator Ocean)
- + NPP seawifs

Lehodey 2009, Mercator Ocean Newsletter, 35

Use of ocean colour products : ecological forecasting

- re-analyses
- realtime and forecasts

Requirements :

- continuous observational records for re-analyses
- high resolution for realtime and forecasts

Problems :

- undersamplig of key regions (cloud cover)
- coherence between spatial/temporal scales of physical and biogeochemical fields
- from open ocean to shelf seas: changes in optical properties of ocean waters, needed corrections

Ocean colour products for

 ⇒ applications in operational oceanography : model guidance / data assimilation management of living marine ressources
 ⇒ applications in biogeochemical & climate research : model evaluation process studies

Use of ocean colour products : model evaluation & skill assessments

- model mean state
- variability : seasonal, inter-annual to decadal

Requirements :

continuous observational records

Q: to what extent are merged products suitable for study of variability and trend?

Problems (shared with OO applications):

- undersamplig of key regions (cloud cover)
- from open ocean to shelf seas: changes in optical properties of ocean waters, needed corrections

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

Use of ocean colour products : process studies

- detection of trends in response to climate change
- ecosystem dynamics : from NPP to export production
- 'diversity' of surface ocean ecosystem : PFTs

Requirements:

- continuous observational records
- further development and improvement of downstream products: e.g. algorithms for PFT identification suspended particle and size spectra chlorophyll to C ratio

Problems:

- undersamplig of key regions (cloud cover)
- open ocean to shelf seas: changes in optical properties
- poorly constraint uncertainty

Ocean colour products for

⇒ applications in biogeochemical & climate research : decadal scale predictions of biogeochemistry

Decadal Prediction of NPP across the Equatorial Pacific

Decadal approach applied to biogeochemistry

Initialization: guiding the model along the trajectory of observed natural variability

over 60% of observed NPP variability is reproduced by the model

Prediction of NPP

Retrospective forecasting period: 1997 to 2012. Observations: -SeaWiFS: 1997-2008 -MODIS : 2002-2012

Prediction :

- each year
- ensemble of 3 members
- for 10 years
- no nudging

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

observed

SST

modelled

SST

Prediction of NPP

1-year predictability (from correlation)

NPP

SST

Séférian et al., 2014

Prediction of NPP

<u>2 to 5 year predictability</u> (from correlation)

NPP

SST

SST is predicted up to 1 year NPP is predicted from 2 up to 5 years !

Séférian et al., 2014

Prediction of NPP: explanation

Cez

Simon Laplace

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

Summary

Requirements: - a modeller's wish list -

- continuity in space and time of observational records
- matching of spatial (eddy resolving) and temporal (high frequency) resolution: model – ocean colour products
- information uncertainty associated to specific products
- continuous development of algorithms suitable for shelf seas and coastal ocean
- continuous development and improvement of downstream products for ecosystem studies

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

