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Uncertainty 
can be eliminated by bad decisions. 



AGENDA 
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OBJECTIVES 
o Attempt to overview some of what has been done for 

satellite data product uncertainty. 

o  Look at research directions. 

o Discuss the path forward. 

o Discussion questions developed thanks to input 
from: 
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QUESTIONS FOR DISCUSSION: 
 
Coordinating and Integrating Efforts 

o  Gaps - What information is currently not sufficiently 
characterized, but that would be helpful for the derivation of 
uncertainty estimates? 

 
o  Coordination - How does the community coordinate and 

integrate disparate efforts and results? 
 
o  Pros and Cons - What are the pros and cons of the techniques 

used to derive uncertainties? 
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QUESTIONS FOR DISCUSSION: 
 
Standardizing Methods and Metrics 

o  Cross Mission - How do we standardize data quality metrics 
and their derivation across multiple missions? 

o  Types of Uncertainty - What are the types of uncertainty 
statistics that are associated with data measurement types? 

o  Choice of Metrics - Which specific metrics do we use to 
quantify uncertainties?!
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QUESTIONS FOR DISCUSSION: 
 
Determining Uncertainty Estimation Quality 

o  Verify or Validate Uncertainty - Can we validate, or perhaps 
verify, uncertainty estimates and to what extent is good enough? 

o  Validation Satellite Data - How do we achieve traceability from 
in situ data uncertainties to satellite products? 

!
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Other Types of Uncertainty: 
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Type A uncertainty can be estimated statistically. 
Type B uncertainty cannot.  This will not be overviewed. 
 
o  However, data product meta data should provide or point to information 

describing measurements exactly. 

o  User should be able to estimate what additional Type B uncertainty arises 
when applied to her or his application. 

o  Also not covered in this talk is inclusion of classification uncertainties (e.g., 
Phytoplankton Functional Types, Flags) (Type A) in the meta data. 

— Error (or Confusion) Matrix. 

— Kappa Statistics. 

— Not a pixel-by-pixel statistic. 

— Similar techniques for spectral endmembers. 



Fundamental Principle of Remote Sensing: 
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Start with basics for Type A uncertainties.   Let… 
 
Z0 be an observable quantity. 
 
Zrs be a remote measurement of Z0 from different location (or time). 
 
                   is the remote sensing measurement error (i.e., the difference 
between the “true” quantity and measured quantity). 
 
U is some measure of the typical size of 𝜀. 
 
The fundamental principle of remote sensing is simply that 
 
 
 
 
In other words, the Fundamental Principle of Remote Sensing is that 𝜀 is 
typically, very small – ideally, sufficiently small enough to answer a specific 
science question.  This provides a framework that unifies several concepts. 

 ε = Zrs - Z0

   

U
Zo

≪1



Fundamental Principle of Remote Sensing: 
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How do we determine that 𝜀 is sufficiently small? 
 
We first need some measure U of the the typical size of 𝜀. 
 
U could be represented, for instance, with the following statistics: 
 
                 is the measurement uncertainty in Zrs, where, 
 
            is the bias (systematic measurement error) in Zrs, and 
 
                    is the standard deviation (random measurement error) in Zrs. 
 
Of course, there are other metrics*, but these are useful for discussion. 
 
* e.g.: median error, mean absolute difference or interquartile range. 

  u = β +σ

 σ = Varε

 β =Eε



Fundamental Principle of Remote Sensing: 
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How do we determine that 𝜀 is sufficiently small? 
 
We need to show that the uncertainty is smaller than some tolerance 
pertinant to our science question.  
 
For instance, we may wish to show that 
 
                          or 
 
 
where, 
 
r0 is the relative threshold criterion (tolerance) and 
 
d0 is the absolute threshold criterion (tolerance) for the total uncertainty. 
 
Similarly, criteria could be set for the error bias and standard deviation 
individually. 

  u < d0 = r0 Zo

  

u
Zo

< r0



Validation and Components of Uncertainty: 
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It is also useful to consider the quantities that contribute to 𝜀. 
 
First, define the validation measurement as follows 
 
 
 
So, a validation measurement has an instrument error 𝜀in and an error 𝜀s that 
depends on scaling and sampling differences (inc. time displacement) between 
the satellite data and in situ measurements. 
 
In practice, we substitute the validation measurement for Z0 as a “close” 
estimate. 
 
Thus, in reality, we get the validation error 
 
 
 
➞ 𝜀in and 𝜀s can cause the measurement uncertainty to be overestimated. 

  Z0
* = Z0 +ε in +ε s

  ε val = Z rs −Z0
* = ε +ε in +ε s



Validation and Components of Uncertainty: 
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Next we consider that Zrs is derived from several sources of information.  The 
quantity Zrs can be described as a function of inputs 
 
 
 
f(x) is the remote sensing model and x is vector of input values 
 
 
 
which is a composite of the following vectors: 
xsat, containing the TOA radiometric measurements made by the sensor. 
xaux, containing the geometric and calibration data for measurements. 
xchar, containing the prelaunch characteristics of the sensor. 
xanc, containing environmental (anciliary) data use to retrieve Zrs. 
 
All of these sources of information have their own associated error, which we 
will call 𝜀dat, a vector containing all the input errors. 

  Z rs = f(x)

 
x = xsat ; x aux ; x char ; x anc

!
"

#
$



l3bin	  
l3map	  

Met	  
Data	  

Time	  
Series	  
Analysis	  

Cal	  
Trend	  	  

Model	  II	  
Regression	  
Analysis	  

L2	  Image	  
Analyses	  

Buoy	  
Data	  OBC	  

Data	  
Aux	  
Data	  

F	  Gain	  
Trend	  
LUT	  

L2	  

L3	  

Geo	  Loc	  
Data	  Corr	  Cal	  

Data	  

Atm	  
LUT	  
Gen	  

Atm	  
Corr	  
LUT	  

NO2	  
Data	  

l2gen	  

Match-‐up,	  
ExtracRon,	  

and	  
l2gen-‐1(BD)	  

Vic	  Cal	  

Vic	  Cal	  
Coeffs	  

L1	  
Match-‐
ups	  

L0	  

l1gen	  

Pseudo	  

L1a	   Ice	  
Mask	  

O3	  Data	  
Bathy	  
Data	  

Land	  
Mask	  

Esun	  	  
LUT	  

Sensor	  
Char	  
Data	  

Calc	  
Esun	  

Solar	  
Irr	  

Cal	  
Data	  
Gen	  

L3	  Map	  
Analysis	  

Time	  
Series	  
Gen	  

Field	  
Data	  

Match-‐up,	  
ExtracRon,	  

and	  
l2gen(L1a)	  

L2	  
Match-‐
ups	  

EX
TR

AT
ER

RE
ST
IR
AL
	  

CA
LI
BR

AT
IO
N
	  	  P
RO

CE
SS
IN
G	  

EXTERNAL	  ENV	  DATA	  

Vicarious	  Cal	  Path	  

VIIRS	  OC	  PROCESSING	  

Anciliary	  Data	  

Off-‐line	  Data	  

On-‐line	  Data	  

Data	  Analysis	  

Off-‐line	  Proc	  

On-‐line	  Proc	  

Valida'on	  Processing	  Vicarious	  Cal	  Path	  



Validation and Components of Uncertainty: 

18 

We can assume that the function f is a perfect representation of Z0, 
i.e., f(x) = Z0 whenever 𝜀dat = 0.  
 
Thus we can describe a Perfect Model Error (PME) as 
 
Zrs – Z0 = f(x + 𝜀dat) – Z0 = f(x) + 𝜀PME  – Z0 = 𝜀PME 



Validation and Components of Uncertainty: 
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However, the function f is not necessarily a perfect representation of Z0, so 
even with perfect data as input, so it has its own Inherent Model Error 
(IME). 
 
To first order approximation, we thus have 
 
Zrs – Z0 = f(x + 𝜀dat) + 𝜀IME – Z0 
 
Zrs – Z0 = 𝜀PME + 𝜀IME 
 
Thus the validation error has four components 
 
𝜀val = 𝜀PME + 𝜀IME + 𝜀in+ 𝜀s  



Components of Uncertainty: 
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In considering the IME, we would prefer to assume the the algorithm is dealing 
with inputs of the same scale on which it was parameterize. 
 
However, for a nonlinear model, the function of an average does not equal the 
average of the function, thus we have an aggregation bias 
 
 
 
 
where H is the Hessian for a single dependent variable of f(x). 
 
Thus, validation error can be rewritten as a sum of five components : 
 
                          𝜀val = 𝜀PME + 𝜀IME + 𝜀agg + 𝜀in+ 𝜀s  

   
εagg = f(x)− f(x) !

1
2

E (x - x)TH(x)(x - x)#$ %&

Known match-up difference. 

In situ errors – could be reduced. 
Algorithm errors – could be estimated. 



Components of Uncertainty: 
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Imperfect Model Error (𝜀IME) Estimate 
 
o  RS models (e.g., f(x)) are essentially composite functions of models. 

o  Uncertainty for individual components can be mined from literature. 
 
o  Collective algorithm error statistics can be estimated using uncertainty 

propagation theory. 

o  Empirical models have uncertainty statistics build-in (e.g., regression 
residuals) 

 
o  Can be comparable to 𝜀PME and must be included in an estimate of 𝜀. 



Components of Uncertainty: 
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Perfect Model Error (𝜀IME) Estimate 
 
Delta Method 
 
 
 
 
 
 
 
 
 
 
o  Requires tests for linearity and convergence.  Nonlinearity requires more 

terms. 

o  Jacobian and Hessian matrices must be approximated numerically. 

o  Build statistical model of 𝜀PME as a function of x. 

  

Σ f = Var(f(x +εdat ))=FΣxF
T +
1
2

Tr F1ΣxF1Σx( ) Tr F1ΣxF2Σx( ) ! Tr F1ΣxF1Σx( )
Tr F2ΣxF1Σx( ) Tr F2ΣxF2Σx( ) "

" # "
Tr F1ΣxF1Σx( ) ! ! Tr FnΣxFnΣx( )

#

$

%
%
%
%
%

&

'

(
(
(
(
(

  

E εPME = E f(x +εdat ) - f(u)=
1
2

Tr F1Σx( )
Tr F2Σx( )
!

Tr FnΣx( )

#

$

%
%
%
%
%

&

'

(
(
(
(
(

Hessian for function output 

Covariance matrixe for 𝜀dat 

Jacobian matrix for f(x) 

(Kubáček and Tesaříkova 2010) 

(for nonlinear models see Kubáček 1996) 



Components of Uncertainty: 
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Perfect Model Error (𝜀IME) Estimate (cont.) 
 
Monte Carlo Simulation 
 
Steps: 
   1. Repeatedly simulate 𝜀dat using a random number generator and model. 
 
   2. For each instance of 𝜀dat, calculated 𝜀PME = f(x+𝜀dat)-f(x). 
 
   3. Accumulate statistics of 𝜀PME. 
 
   4. Build statistical model of 𝜀PME as a function of x. 
 
o  Requires a model of 𝜀dat. 

o  Can be accurate, but is computationally expensive. 

o  Approach is a focus of ESA and NASA efforts for uncertainty products. 



Wrap Up: 
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o  Type A uncertainty can be quantified using statistics of systematic and random 
measurement errors.  Type B and classification data uncertainty could be in metadata. 

o  Other analyses are required for categorical data like flags for classes. 

o  To first order, validation error can be view as a sum of contributing errors :                     
𝜀val = 𝜀PME + 𝜀IME + 𝜀agg + 𝜀in+ 𝜀s. 

o  This equation unifies sources of Type A uncertainty.  It could be perhaps used in a 
closure study. 

o  Numerical approximations are possible for 𝜀PME, but require a good model of 𝜀dat and 
development of a reusable model of 𝜀PME as a function of x. 

o  𝜀IME can be comparable in size to 𝜀PME and must be included in any uncertainty 
estimate. 

o  Further research and analysis is required to estimate 𝜀IME based on model 
component uncertainty and propagation of uncertainty with consideration of 
random vs systematic behavior. 

o  Estimates 𝜀IME  is often already provided in the literature on a component by 
component basis by the modeler developers.  



THANK YOU 
And now, let’s begin… 
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QUESTIONS FOR DISCUSSION: 
 
Coordinating and Integrating Efforts 

o  Gaps - What information is currently not sufficiently 
characterized, but that would be helpful for the derivation of 
uncertainty estimates? 

 
All uncertainty sources are not fully characterized.  E.g., the 
inherent model error should be considered for most algorithms?  
Likewise, for sampling/scaling differences between satellite and 
validation data, intrapixel or pixel coverage should be understood. 
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QUESTIONS FOR DISCUSSION: 
 
Coordinating and Integrating Efforts 

o  Coordination - How does the community coordinate and 
integrate disparate efforts and results? 

A group (e.g., IOCCG Uncertainty group) could track and 
organized activity.  Suggest supporting a website where a reading 
list of results, reports and publication can be maintained 
(including links to documents, where appropriate).  Effecacious 
techniques could be selected by agencies for implementation, if 
they monitor this site and news. 
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QUESTIONS FOR DISCUSSION: 
 
Coordinating and Integrating Efforts 

o  Pros and Cons - What are the pros and cons of the techniques 
used to derive uncertainties? 

 
Global approaches, such as neural networks (NN) or Bayesian 
techniques, build on all availabe information, but are the results 
instructive regarding the source of uncertainty? 
 
“Perfect Model” uncertainty using Monte Carlo simulation could 
be computationally expensive. Taylor/Delta methods can be less 
expensive computational, but are mathematically and numerically 
challenging to implement.  In either case, a simplified model to 
describe changes in uncertainty must be constructed. 
 
“Imperfect Model” uncertainty needs more attention. Material can 
be found in the literature, but it needs careful review and 
consolidation into complete description. 
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QUESTIONS FOR DISCUSSION: 
 
Standardizing Methods and Metrics 

o  Cross Mission - How do we standardize data quality metrics 
and their derivation across multiple missions? 

 
Community surveys and discussions to identify user needs coud, 
to an extent, help develop a standard for metrics.  But, ultimately, 
this will require a dialogue between agencies generating data 
products, perhaps facilitated through the IOCCG working group. 
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QUESTIONS FOR DISCUSSION: 
 
Standardizing Methods and Metrics 

o  Types of Uncertainty - What are the types of uncertainty 
statistics that are associated with data measurement types? 

 
o  Choice of Metrics - Which specific metrics do we use to 

quantify uncertainties?!

Typical uncertainty statistics involve single numbers regarding 
total uncertainty (e.g., RMSE).  For some missions (e.g., JPSS), data 
product performance is stated in accuracy (bias) and precision 
(variability).  The expected skewness of uncertainty for some data 
products (e.g., log normal) suggests confidence intervals or 
quartile ranges. 
 
However, the approaches suggested for the previous questions 
could elucidate which specific metrics are wanted by users. 
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QUESTIONS FOR DISCUSSION: 
 
Determining Uncertainty Estimation Quality 

o  Verify or Validate Uncertainty - Can we validate, or perhaps 
verify, uncertainty estimates and to what extent is good enough? 

o  Validation Satellite Data - How do we achieve traceability from 
in situ data uncertainties to satellite products? 

 
Ideally, we would want all estimates of uncertainty to fit withing the 
framework of theory.  E.g., summation of all uncertainty 
components should be comparable to the average difference 
between the satellite data and in situ measurements. 
 
A mismatch may not provide much information as to the cause. 
Still, perhaps an end-to-end simulation or error budget of all error 
sources, including in situ measurement uncertainty, could be used 
test how well components uncertainty are estimated. 
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single band perturbations, nLw for 667nm is the most affected.  There was less data loss 

nLw for 412, 443, and 488nm over the open ocean, but nearly all of the data for all nLw 

values exceeded the error threshold of 5% for the coastal scene.

The standard NASA chlorophyll a concentration algorithm is a function of certain nLw 

ratios; however, opposite-signed errors in the NIR TOA radiance can have an effect.  

Unlike nLw, such an effect is mitigated by the fact that the resulting nLw errors are like-

14

Figure 8 - Shown are the effects of 0.3% opposite-signed errors across the NIR 

band pair on chlorophyll for Scene 2. The errors are also mostly within accuracy 

and precision specs; however, the effects change sign across the scene, causing a 

steeper spatial gradient in Chl.

Effect on Chl of 
perturbing Lt for 
each NIR band 
%0.3 in opposite 
directions. 
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