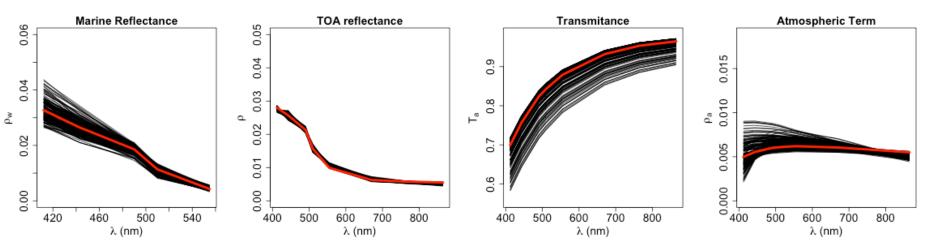
Bayesian Approach to Atmospheric Correction of Satellite Ocean-Color Imagery: Confidence Domains of the Retrieved Water Reflectance


Robert Frouin Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA

International Ocean Color Science Meeting, 16 June 2015, San Francisco, California

Ill-posed Nature of the inverse Problem

-The ocean color inverse problem (or atmospheric correction) is the retrieval of water reflectance from TOA reflectance.

-Multiple combinations of atmospheric and oceanic parameters (or pre-images) yield the same TOA reflectance. This places the inverse problem in a probabilistic context.

$$\rho \approx \rho_a + \rho_w T_a$$

Example of pre-images. Actual values of ρ_w , ρ , T_a , and ρ_a are displayed in red, and the pre-images at a distance no more than $\delta = 0.001$ are displayed in black. The search spaces for the pre-images include NOMAD and AERONET-OC data sets and maritime, continental, and urban aerosols in various proportions and amount.

Bayesian Methodology

-The forward model is written as: $\rho = \phi(\rho_w, x_a) + \varepsilon$, where ρ is the TOA reflectance, ρ_w is the water reflectance, x_a denote the atmospheric parameters, and ε is a random noise.

-In the Bayesian approach to inverse problems, ρ_w and x_a are treated as random variables. This defines a probabilistic model, where any vector of measurements ρ^{obs} is considered a realization of the random vector ρ .

-The probabilistic model is specified by the forward model together with the distributions of ε and of (ρ_w, x_a) . The distribution of (ρ_w, x_a) , called the prior distribution, describes in a probabilistic manner the prior knowledge one may have about ρ_w and x_a before the acquisition of the data.

Bayesian Methodology (cont.)

-The Bayesian solution of the inverse problem of retrieving (ρ_w , x_a) from ρ is defined as the conditional distribution P[(ρ_w , x_a)/ ρ]. It is called the posterior distribution. Hence, given the observation ρ^{obs} , the solution is expressed as the probability measure P[(ρ_w , x_a)/ $\rho = \rho^{obs}$].

-One is generally interested in certain relevant characteristics of the posterior distribution: its mean, which gives an estimate of the parameters to retrieve (ρ_w and x_a), and its covariance, which provides an accompanying measure of uncertainty.

-One may also compute a p-value, i.e., the probability that ρ takes a value at least as extreme as ρ^{obs} . Since the whole procedure consists of inverting a forward model (a component of which is a RT model), the p-value allows one to detect situations for which the forward model is unlikely to explain the data.

Connection with the Classical Scheme

-Consider the conditional expectation $E[\rho_w/\rho]$. Since $E[\rho_w/\rho]$ = $E[E[\rho_w/\rho, x_a]/\rho]$, we see that $E[\rho_w/\rho, x_a]$ can be modeled first, and then averaged conditionally on ρ in a second time.

-This corresponds to inverting ρ assuming that the atmosphere is in the state x_a , and then averaging the results according to the distribution of x_a given ρ .

-So, compared with the classical approach, instead of picking an aerosol model and then inverting ρ assuming the atmosphere is in the state x_a , the Bayesian methodology amounts to placing a probability distribution on x_a , depending on ρ , inverting ρ for each x_a , and then averaging the results accordingly.

Application to SeaWiFS Imagery, South Africa, 02/14/1999

^{32°S} Δρ_{*}(412)

34°S

-38°S

40°S

32°S

34°S

-36°S

-38°S

40°S

34°S

-36°S

-38°S

-40°S

-0,010

0,005

0.0

Δρ_•(490)

e0,004

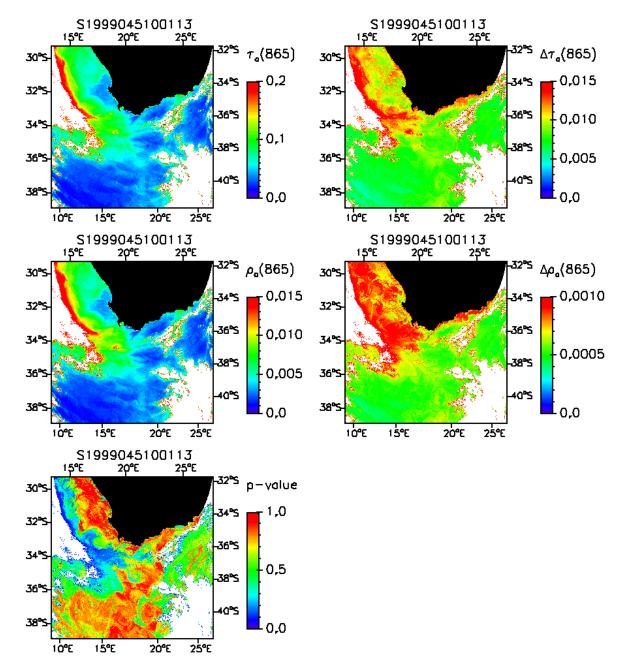
0,003

0,002

0,001

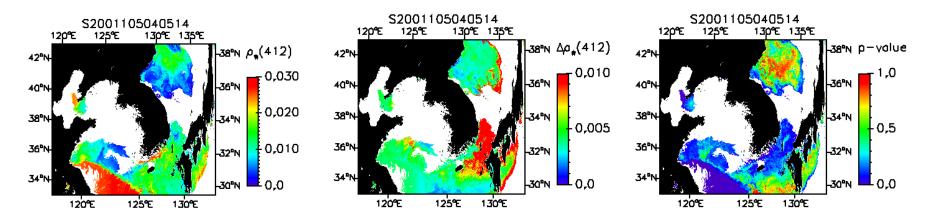

0,0

r 0,002


0,001

0,0

-32°S Δρ_∎(555)



Estimated ρ_w at 412, 490, and 555 nm and associated uncertainty, Bayesian methodology.

Estimated τ_a , ρ_a at 865 nm and associated uncertainty, and p-value, Bayesian methodology.

Application to SeaWiFS Imagery, East Asia Seas

Estimated ρ_w at 412 nm, associated uncertainty, and p-value, Bayesian methodology. Uncertainty in East China Sea is relatively small (0.003-0.004), but p-value <0.01, indicating that model and observation are incompatible.

Conclusions

-The Bayesian approach is adapted to the ill-posed nature of the ocean color inverse problem.

-The solution, expressed as a probability distribution, allows the construction of reliable multi-dimensional confidence domains of the retrieved water reflectance.

-Expectation and covariance can be computed, which gives an estimate of the water reflectance and its uncertainty. The pvalue identifies situations for which forward model and observation are incompatible.

-Covariance and p-value are complementary measures of uncertainty and quality. But they should be viewed in the context of a forward model. They do not replace uncertainties obtained by comparing retrievals with in situ measurements.