

Uncertainty propagation Current status in OLCI processor and MERIS 4th reprocessing

P. Goryl (ESA/ESRIN) Presented by L. Bourg (ACRI-ST)

ACRI-ST | Author | Meeting title | Date | Slide 1

Uncertainties in a more general context

Restricting to propagation of TOA radiometric uncertainties down to geophysical parameters

- Further restricting to the core step toward OC products: the AC
- Validation methodology & results
- **Examples and correlation with aerosol retrieval and existing QIs**

Conclusion and recommendations

Uncertainties: definitions and assumptions

Model linking a geophysical parameter to a remote sensing measurement

Example:

- y : water leaving reflectance
- x : L1 TOA radiances
- v : inversion parameters, e.g. geometry, meteo conditions...
- f : transfer function of the atmosphere correction

Uncertainties: model

Assumptions for application:

- normal distribution (no bias)
- Small uncertainties (linearization is possible)
- Statistical independence of uncertainty sources (x,v)

Under these assumptions uncertainty on y follows:

1. Remote Sensing Measurement (L1) Uncertainty

- Intrinsic (shot) noise
- Instrument measurement error residuals (after correction/calibration)
- *** 2. External parameters uncertainties**
 - e.g. uncertainty on meteo/environment conditions (not straightforward!)

3. geophysical transfer function « model error »

- Stimate impact of approximations made in the L2 model
- **Examples: RT LUTs, natural variability...**

4. Propagate uncertainties

 Compute partial derivatives of the transfer function with respect to all terms

1. Remote Sensing Measurement (L1) Uncertainty

- Intrinsic (shot) noise
 Empirical workaround at L2 (mostly shot noise + inter-band correlation matrix)
- 2. External parameters uncertainties
 - e.g. uncertainty on meteo/environment conditions

```
Ignored
```

3. geophysical transfer function « model error »

Estimate impact of approximations made in the L2

Ignored

Examples: RT LUTs, natural variability...

4. Propagate uncertainties

terms

Compute partial derivatives of the transfer function with respect to all

MERIS/OLCI status: propagation of TOA measurement errors (shot noise assumption) to BOA reflectance errors (other terms ignored)

Application: where in the Level 2 chain

• Inputs of this work are $\rho_{path}(779)$, $\rho_{path}(865)$ and $\rho_{gc}(\lambda_{VIS})$

- Goal of error propagation: from TOA σ_{779} , σ_{865} and $\sigma_{\lambda_{VIS}}$, deduce $\sigma_{\rho_w(\lambda_{VIS})}$ and σ_{Chl} , σ_{Kd} etc.
- TOA uncertainty refers here to radiometric noise

Application to the CWAC problem

- Consider function $\rho_{w,\lambda}(x, y, z) = \frac{x \zeta_{\lambda}(y, z) * \rho_{R}(\lambda)}{t_{\lambda}(y, z)}$ with $x = \rho_{gc}(\lambda)$, $y = \rho_{path}(779)$ and $z = \rho_{path}(865)$
- Variance-covariance matrix is

$$C = \begin{pmatrix} \sigma_{\lambda}^2 & \sigma_{\lambda,779} & \sigma_{\lambda,865} \\ \sigma_{\lambda,779} & \sigma_{779}^2 & \sigma_{779,865} \\ \sigma_{\lambda,865} & \sigma_{779,865} & \sigma_{865}^2 \end{pmatrix}$$

to be determined from sensor/Level 1 characterisation

In the Antoine & Morel atmosphere correction (1999), it is possible to derive analytically all terms $\frac{\partial \rho_W}{\partial x}$, $\frac{\partial \rho_W}{\partial z}$, $\frac{\partial \rho_W}{\partial z}$ and compute $var(f) \rightarrow$ Pixel by pixel uncertainty propagation

Validating uncertainty propagation (1/3)

Data

- Very homogenous targets: radiometric uncertainty can be assessed by spatial standard deviation around each pixel (small scale wrt errors due to modelling)
- > South Pacific Gyre and South Indian Ocean (NIR vicarious calibration sites, no bias)

Method

Validating uncertainty propagation (2/3)

- Comparison between reference (x-axis) and computed uncertainty (y-axis)
- Variances and spectral covariances are very well retrieved, on the full range of errors (495 scenes)

Note: inputs uncertainties are derived from TOA <u>macropixels statistics</u>, not <u>modelled</u>!

ACRI-ST | Goryl| IOCS 2015 | 16 June 2015 | Slide 10

MERIS RR uncertainty maps

(this time L1 uncertainty from shot noise model + covariance matrix)

 $\rho_{w}(443)$

 $\sigma_{
ho_{W}(443)}$ *1000

Uncertainty versus aerosol models

ACRI-ST | Goryl | IOCS 2015 | 16 June 2015 | Slide 12

Uncertainty versus Level2 flags

Background = $\sigma(\rho_w(443))$ Background = $\rho_w(443)$ **Red points =** $\sigma(\rho_w(412))$ > **3. 10**⁻⁴ Red points = PCD_1_13 or OADB flag

Conclusions and recommendations

Following ESA's QA4EO guidelines for OLCI products uncertainty estimates

- it is possible to analytically propagate <u>radiometric uncertainty</u> through Level 2 inversions such as atmosphere correction and ocean color.
- the method is documented in S3 Optical product ATBD and DPM
- the method is implemented in the OLCI Level 2 ground segment and will be for MERIS 4th reprocessing

Experience leads to following recommendations:

- The full characterization of Level 1 radiometric uncertainty is absolutely required (in particular spectral variance-covariance matrix)
- Uncertainties from upstream steps need to be accounted for (smile correction, bright pixel atmospheric correction, glint correction...)
- Contributions from external parameters (meteo) need to be computed
- With current OC sensors radiometric performance, uncertainties from physics (e.g. bio-optical model, RT) are important contributors: need to be assessed as well.