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The problem of optically complex water 

• high variability of optical properties of water constituents 

• more factors which determine top of atmosphere reflectances than can be 
inversely retrieved  

• the model behind the retrieval algorithm can represent only a fraction of the 
actual conditions 

• thus: 

– the conditions and corresponding reflectance spectrum can be out of scope of 
the model 

• and even when in scope 

– ambiguities and masking effects can lead to significant uncertainties 

• Requirement for MERIS / OLCI case 2 water algorithm: 
– flags when NN inputs or outputs are at the limit of the training range  

– co-algorithm to determine spectra, which are out of scope 

– co-algorithm to determine uncertainties 



OLCI and MERIS case 2 water algorithms 

• MERIS (4th reprocessing) and OLCI standard products of case 2 water are based on 
2 neural network algorithm systems 

– atmosphere NN: Rtosa -> Rw (MERIS 12 / OLCI 14 spectral bands) 

– water NN: Rw (9 / 11  bands) -> 5 IOPs (apig, ad, ag, bp, bw) 

– the bio-optical model for water is based on parameters derived from the 
NOMAD data set (which has been extended to case 2 waters) concerning: 
IOPs, frequency distributions, co-variances. 

– atmosphere model is based on aerosol optical properties derived from coastal 
stations of the AERONET 

– large training data set of > 1 Mio. cases, simulation with a SOS atmosphere 
model (Zagolski, F., Santer R., Aznay O., 2007), and Hydrolight (Mobley, 1994) 
for water 

• procedures for 3 types of checks: 

– flag if inputs or outputs of the NNs are at the lower or upper limit of the 
traning data set 

– flag if input spectrum is out of scope: test with auto-associative NN for 
atmosphere and a combination of an inverse and forward NN for water 

– determination of IOP uncertainties of the output of the NN with respect to the 
training data set 



A manifold of factors determine the radiance spectrum at top of atmosphere 
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Information content of TOA radiances: PCA and aaNN 
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Transect North Sea TOA radiance 

TOA radiance spectra 
along transect 

Principle Component Analysis: 
only 3 significant factors 
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Detection of out of scope conditions 

• 2 Procedures have been developed for MERIS / OLCI: 

– Combination of an inverse and forward Neural Network 

– Use of an autoassociative Neural Network 

• Both produce a reflection spectrum, which is compared with the input spectrum 

• Deviation between input and output spectrum can be computed as  chi2 

• A threshold can be used to trigger an out of scope warning flag 

Inverse 

NN 
IOPs 

Forward 

NN 
R Input  R output 

autoassociative 

NN 
R Input  R output 

• Combination 

of inverse  

and forward NN 

• Auto-associative 

 NN 



Detection of out of scope conditions aaNN: 
example for L1 (TOA) data 

Transect 

High 

SPM 
Sun 

glint 

MERIS scene of the Yellow Sea 



Detection of out of scope conditions aaNN: example 
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Uncertainties due to the bio-optical model 
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Uncertainties due to variable relationship between a_pig and 
chlorophyll 

443 nm, log10 scale, 920-956 samples for chl_f, NOMAD data set 



Uncertainties due to ambiguities 
for different concentration mixtures 

All cases of turbid water 
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case 2 water chlorophyll retrieval with NN  
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Pigment in North Sea Water (gelb < 0.2 m-1, MSM < 5 mg/l) 

Typical North Sea coastal water: 

ay_443: < 0.2 m-1, TSM < 5 mg /l 



Tests of NNs  with different assumed uncertainties of reflectances 

Test of a_pig, no additional error Test of adg, no additional error 

Test of a_pig with an extra random error 

with a standard deviation of 3% 

Test of adg with an extra random error with 

a standard deviation of 3% 



Determination of uncertainties 

This procedure determines uncertainties – if the data are within the scope of 
the model – due to ambiguities and masking effects 

• test of simulated with the inverse neural network 

• test with different assumed uncertainties of reflectances 

• compute deviations between output of the NN and the corresponding 
data of the model are included in look-up table 

• train a NN with the 5 IOPs as input and the deviations of the 5 IOPs as 
output: apig, ag, ad, bp, bw 

• further NNs are trained with the 5 IOPs as input and the combined 3 
products as output:   

– absorption by phytoplankton pigments (apig / chlorophyll),  

– absorption by yellow substance / gelbstoff and detritus (agd) ,  

– scattering by standard and white particles (btsm / TSM) 
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Rw water reflectance 
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Helgoland transect C27 

atotal_443 TSM 

red dots: water samples,  blue dots: MERIS data 



Helgoland transect C27 

chlorophyll and uncertainties 

of water samples (red dots with bars) 

and MERIS data (blue dots with bars) 

apig_443 (blue dots) and 

uncertainties (green dots) 

MERIS data 



Summary and conclusion 

Problem 

• In most case 2 waters we have more variables, which determine TOA radiances, than 
we can retrieve 

• Importance of variables in water change with their concentrations and variables can 
mask each other and spectra might be ambiguous wrt. the IOPs or concentrations of 
water constituents 

• The model behind a case 2 water algorithm is a simplification, reflectance spectra can 
occur, which are outside the scope of the model 

Requirement 

• Thus, we have to check if a TOA or water reflectance spectrum is in scope of the model 
used for the algorithm 

• and we have to determine the uncertainty of the retrieved IOPs due to ambiguities and 
masking effects 

Solution for MERIS / OLCI 

• Co-algorithm to identify out of scope spectra by using an aaNN or combination of 
inverse and forward IOP-Rw NN 

• uncertainty NN which is trained with the deviations between the IOPs of the simulated 
test data set and the IOPs as output of the inverse NN 

Open problem 

• validation of the uncertainty NN with field data 

 

 

 

 


