Status of GOCI-II Development

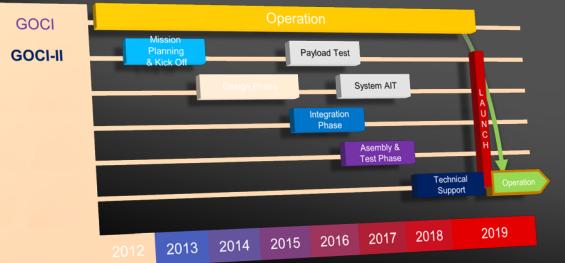
Seongick CHO

On the behalf of Dr. YoungJe Park, Director of KOSC

Korea Ocean Satellite Center (KOSC) Korea Institute of Ocean Science & Technology (KIOST)

IOCS Meeting 2015, San Francisco, USA 16. June, 2015

GOCI-II / GK-2B


GOCI-II

GeoKompsat-2B : GOCI-II & GEMS(TEMPO)

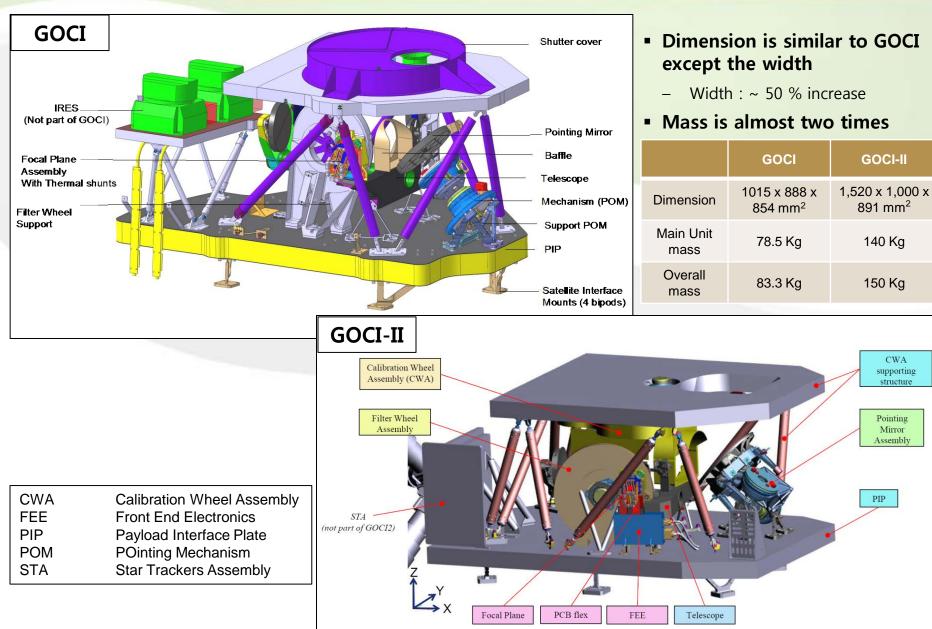
GeoKompsat-2A : AMI(ABI)

- (2008) Planning Study of GOCI-II (KIOST)
- (2009) 1st Preliminary Feasibility Evaluation (MOSF)
 - Approval Pending before GOCI launch
- ◆ (2010) 2nd Preliminary Feasibility Evaluation (MOSF)
 - Approved just after GOCI Launch
- ◆ (2011) Delayed Kick-off due to the budget issue
 - (2012) Kick-off of the GOCI-II project
 - (2013) Kick-off of the Joint Development

GEMS

- GOCI-II Development :
 - Instrument: Joint Development of KIOST-KARI-Airbus DS
 - GS(H/W & S/W): KIOST
 - Bus system KARI
- Supervisor : KIOST

Comparison to GOCI

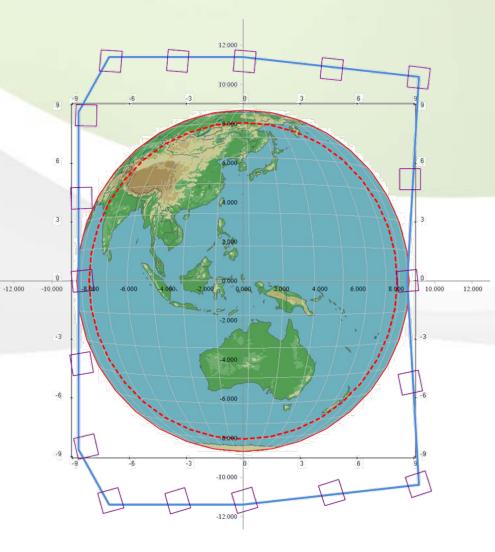

	GOCI	GOCI-II		
Bands	8(VIS/NIR)	13(VIS/NIR)		
Ground Sampling Distance	500m (Local Area Mode)	250m (Local Area Mode) 1km (Full Disk Mode)		
Coverage	North-East Asian Sea around Korea	NE Asian Sea + Event Area Full Disk		
S/N	~1000	~ 1000		
Observation interval	An hour (8 times/day)	An hour (10 times/day)		

Rational for the User Requirements

Items Specs		Rational			
Increased band number	13 bands (incl. Panchromatic band)	PFT, HAB detectionAtmospheric correction improvement			
Improved spatial resolution	250m @ nadir	- Monitoring of river estuaries and coastal environments			
More observations	10 times/day	- Study of short-term ocean processes (monitoring of diurnal variation)			
Pointable & Full Disk coverage	Local Area + Full Disk	 Monitoring of events in the coverage Study of large-scale phenomena (e.g. ENSO) 			

Main Unit Overview

Field of Regard coverage

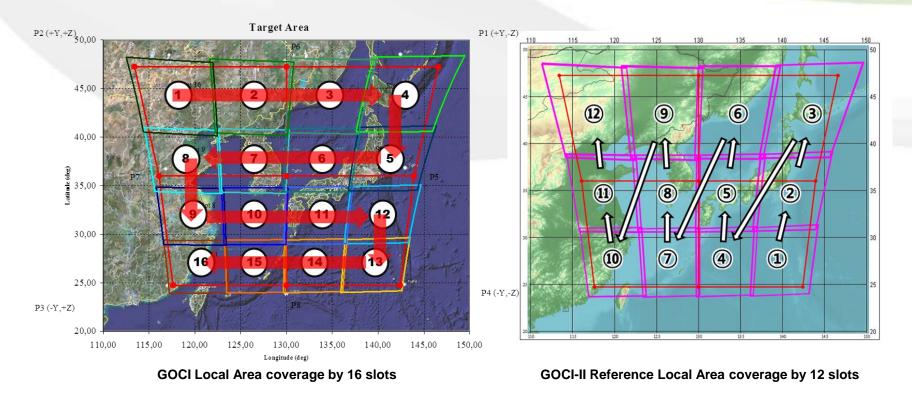


Range of gimbal angles:

- x(N/S): -8.20 deg and +8.20 deg
- y(E/W): -4.40 deg and +4.30 deg

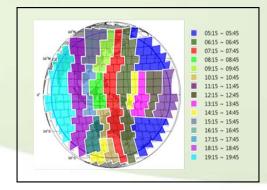
eGSD (m)

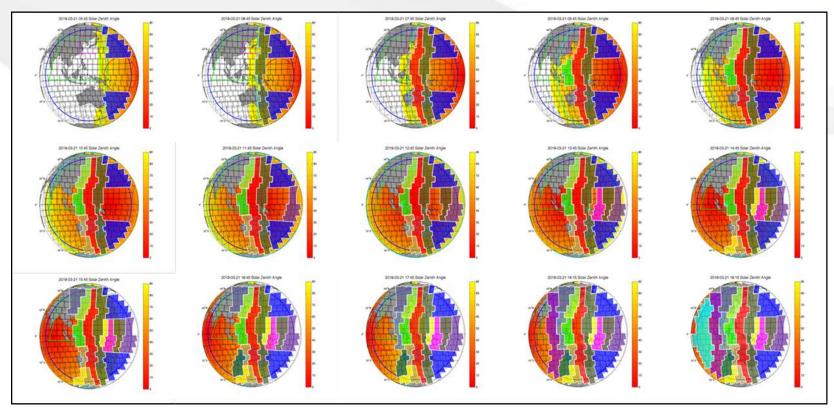
Local Area	GOCI	GOCI-II	Requirements
At center	481	299	< 301 m
At North-East corner	587	364	< 371 m
At North-West corner	575	359	< 371 m
At South-West corner	440	274	< 371 m
At South-East corner	449	278	< 371 m



Mission Operation Plan

Reference Local Area (RLA)


- Baseline for slot imaging acquisition
 - Column-by-column Raster scan
 - South to North within a column, East to West between column
 - For the reduction of ISRD (Inter Slot Radiance Discrepancy) in operation level



Mission Operation Plan

Full Disk (FD) (TBD)

- The Imaging time for FD < 240 minutes
- FD image acquisition : 1 image per day (5:15 19:45 Korean local time)
- FD imaging criteria
 - Solar Zenith Angle < 80 degrees
 - Sunglint Reflectance < 0.01 sr-1
- Preliminary assessment in GOCI-II instrument level based on PDR Design

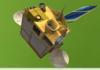
Spectral Bands and Performance

Spectral Bands Requirements

- 13 Bands (GOCI : 8 Bands)
- HAB, PFT identification, Atmospheric Correction Improvement

							Radiance : W/m²/um/sr			
GOCI Band	GOCI-II Band	Bandcenter	Bandwidt h	Nominal Radiance	Maximum Ocean radiance	Threshold Radiance	Maximum Cloud Radiance	NEdL	SNR @ Nominal radiance	
-	1	380 nm	20 nm	93	139.5	143.1	634.4	0.093	998	
1	2	412 nm	20 nm	100	150	152	601.6	0.095	1050	
2	3	443 nm	20 nm	92.5	145.8	148	679.1	0.081	1145	
3	4	490 nm	20 nm	72.2	115.5	116	682.1	0.059	1128	
-	5	510 nm	20 nm	64.9	108.5	122	665.3	0.055	1180	
4	6	555 nm	20 nm	55.3	85.2	87	649.7	0.049	1124	
-	7	620 nm	20 nm	53.3	64.1	65.5	629.5	0.048	1102	
5	8	660 nm	20 nm	32	58.3	61	589	0.03	1060	
6	9	680 nm	10 nm	27.1	46.2	47	549.3	0.03	914	
-	10	709 nm	10 nm	27.7	50.6	51.5	450	0.03	914	
7	11	745 nm	20 nm	17.7	33	33	429.8	0.02	903	
8	12	865 nm	40 nm	12	23.4	24	343.8	0.015	788	
-	13	643.5 nm	483 nm	-	-	-	-	-	-	

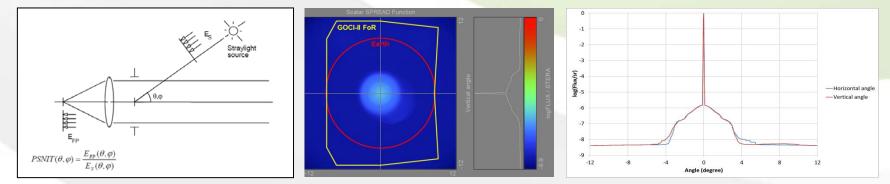
In-Orbit Solar & Lunar Calibration Plan


Enhancement of Radiometric Performance

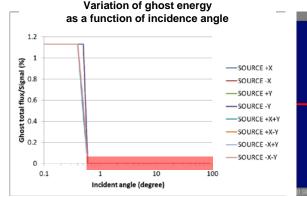
- Better uniformity of detector response for GOCI-II is expected
 - On-going verification of in-house detector prototype performance test

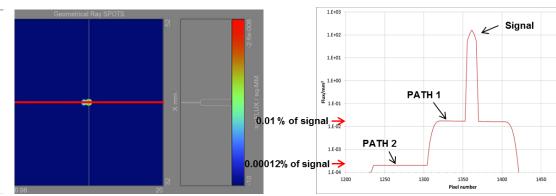
Enhancement of Solar Calibration

- Full Characterization of diffuser w.r.t. incident angle variation is planned
 - This was not fully performed for GOCI even though highly requested by User
- Lambertian transmission is one of key criteria for the selection of diffusers
 - Nearly perfect Lambertian diffuser is introduced for GOCI-II
 - Internal gas bubbles enable ideal light scattering for Lambertian property
 - Lambertian characteristics is recently verified by in-house sample test
- Same as GOCI, second diffuser for monitoring the aging of main diffuser is implemented for GOCI-II
- Lunar Calibration : complementary calibration method
 - ROLO model : Reference Lunar Spectra Model for GOCI-II
 - Required Research for Mission Operation Plan of Lunar Calibration
 - Observable Time Period for Lunar Calibration (Phase > 60%)
 - Operational Issues for GOCI-II Lunar Calibration
 - Moon(even in 100% phase) may not cover the whole GOCI-II IFOV
 - Limitation of Moon Image Acquisition


Straylight analysis

1500


Straylight analysis by PSNIT


- Be Included the Earth flux by the sun and other sources such as sun, moon and so on.
- The straylight level is dominated by the mirror scattering.

Ghost

- Block the unwanted light from out of FoV by Field stop.
- GOCI ISRD main source is the ghost caused by out of FoV.

Summary

Development Status of GOCI-II

- System Design Review was successful in 2013.
- Preliminary Design Review was successful in 2014.
- Critical Design Review is planned in late 2015.
- Expected launch date of GOCI-II/GK2B is early 2019.
- Other Enhancement of GOCI-II
 - Operational Flexibility(# of band for each slot, # of image for each band, etc.)
 - Extended FoR (Field of Regards) for the effective Lunar Calibration, Star Imaging & Full Disk
 - Star Imaging capability for the Image Navigation & Registration (INR)
 - Planned Pixel-level Spectral Response Function(SRF)
 - Panchromatic Band (bandwidth: B2~B12) for the Star Imaging and more