GOCI Status and GOCI-II Plan

Joo-Hyung Ryu
On behalf of Korea Ocean Satellite Center

- KIOST/KOSC
- GOCI status
- GOCI applications
- GOCI-II plan
• “Geostationary ocean colour will not be available for at least another decade”...IOCCG Report1, 1998.

• NOAA or Eumetsat require approximately 10 years, from design to launch, to complete a geostationary platform. Little or no chance exists of adding ocean-colour bands on GOES-P, which is planned for launch in 2007 (launch readiness: 2006). Time is available, however, to justify and incorporate Other operational aspects 30 an ocean-colour requirement on the next GOES platform, Q, which is planned for launch in 2010 (launch readiness: 2008)

• 12 years later, GOCI has been successfully launched in 2010 and ...1st IOCS in 2103.
KORDI has set sail to the broader world of marine sciences and technology as KIOST.

Vision: A global leadership in advanced marine sciences and technology

KIOST Goals: Providing solutions to global agendas and pursues technology R&D to develop the national competency in marine sciences and technology

- Researches on basic marine sciences
- Researches on application and commercialization of marine technologies
- Researches for responses to national issues
- Researches on ocean and polar region policies
Introduction of KOSC

GOCI Operation Agency

MISSION

- Ocean remote sensing satellite development/operation
- Ocean/Coastal remote sensing technique development
- Satellite data calibration and validation
- Data distribution service and research support
- Application research
- Operational use (?)
Introduction of COMS

- COMS: Communication, Ocean & Meteorological Satellite
 - Developments of COMS(H/W) and GDPS(S/W): 2003
 - Establishment of KOSC (Ground System): 2005
 - The first Korean Geostationary multipurpose Satellite
 - Launch date: June 27, 2010
 - Lifetime: 7 years
 - Payloads (3 Missions)
 - Geostationary Ocean Color Imager (GOCI)
 - Meteorological Imager
 - Ka-band Communication
Geostationary Ocean Color Imager
- GSD (Ground Sampling Distance) : 500m * 500m
- Target Area : 2,500km * 2,500km (Center : 130°E 36°N)
- Included Nations : Korea, China, Taiwan, Japan, Russia, etc.
- Temporal Resolution : 1小时 (8 times at 1 day)

Spectral Bands Characteristic and Requirements of GOCI

<table>
<thead>
<tr>
<th>Band</th>
<th>Central wavelengths</th>
<th>Band Width</th>
<th>SNR</th>
<th>Type</th>
<th>Primary Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>412 nm</td>
<td>20 nm</td>
<td>1,000</td>
<td>Visible</td>
<td>Yellow substance and turbidity</td>
</tr>
<tr>
<td>B2</td>
<td>443 nm</td>
<td>20 nm</td>
<td>1,090</td>
<td>Visible</td>
<td>Chlorophyll absorption maximum</td>
</tr>
<tr>
<td>B3</td>
<td>490 nm</td>
<td>20 nm</td>
<td>1,170</td>
<td>Visible</td>
<td>Chlorophyll and other pigments</td>
</tr>
<tr>
<td>B4</td>
<td>555 nm</td>
<td>20 nm</td>
<td>1,070</td>
<td>Visible</td>
<td>Turbidity, suspended sediment</td>
</tr>
<tr>
<td>B5</td>
<td>660 nm</td>
<td>20 nm</td>
<td>1,010</td>
<td>Visible</td>
<td>Baseline of fluorescence signal, Chlorophyll, suspended sediment</td>
</tr>
<tr>
<td>B6</td>
<td>680 nm</td>
<td>10 nm</td>
<td>870</td>
<td>Visible</td>
<td>Atmospheric correction and fluorescence signal</td>
</tr>
<tr>
<td>B7</td>
<td>745 nm</td>
<td>20 nm</td>
<td>860</td>
<td>NIR</td>
<td>Atmospheric correction and baseline of fluorescence signal</td>
</tr>
<tr>
<td>B8</td>
<td>865 nm</td>
<td>40 nm</td>
<td>750</td>
<td>NIR</td>
<td>Aerosol optical thickness, vegetation, water vapor reference over the ocean</td>
</tr>
</tbody>
</table>
Progress of GOCI Operation

- Start of Project
 - Developments of COMS(H/W) and GDPS(S/W) : 2003
 - Establishment of KOSC (Ground System) : 2005
- Launch : June 27, 2010
- First image acquisition : July 13, 2010
- In-Orbit Test : ~ Apr. 2011
- GOCI data(Level 1B) and GDPS viewer service : Apr. 20, 2011
- GOCI data(Level 2) and GDPS Ver.1.0 service : Sep. 2, 2011
- GDPS Ver.1.1 service : Jul. 2012
- Ocean Science Journal GOCI Special Issues : 13 papers included
- GOCI-II project started : Oct. 2012
- GDPS Ver.1.2 release : Apr. 2013
<table>
<thead>
<tr>
<th>PRODUCTS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-leaving radiance</td>
<td>The radiance assumed to be measured at the very surface of the water under the atmosphere</td>
</tr>
<tr>
<td>Normalized water leaving radiance</td>
<td>The water leaving radiance assumed to be measured at nadir, as if there was no atmosphere with the Sun at zenith</td>
</tr>
<tr>
<td>Optical properties of water</td>
<td>K-coefficient Absorption coefficient Backscattering coefficient</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>Concentration of phytoplankton chlorophyll in ocean water</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended sediment concentration in ocean water</td>
</tr>
<tr>
<td>CDOM</td>
<td>Colored dissolved organic matter concentration in ocean water</td>
</tr>
<tr>
<td>Red tide</td>
<td>Red tide index information</td>
</tr>
<tr>
<td>Fishing ground information</td>
<td>Fishing ground probability index, fishing ground prediction</td>
</tr>
<tr>
<td>Underwater visibility</td>
<td>Degree of clarity of the ocean observed by the naked eye</td>
</tr>
<tr>
<td>Sea surface current vector</td>
<td>Sea surface current direction/speed</td>
</tr>
<tr>
<td>Atm. & earth environment</td>
<td>Yellow dust, Vegetation Index</td>
</tr>
<tr>
<td>Water quality level</td>
<td>Coastal water quality level estimation</td>
</tr>
<tr>
<td>Primary productivity</td>
<td>The production of Organic compounds from carbon dioxide, principally through the process of photosynthesis</td>
</tr>
</tbody>
</table>

- **GOCI Data Processing System**
- **Ver1.1 distributed July 2012**
 - More accurate atmospheric correction
 - Improvement of User Interface
- **Ver1.2 (April 2013)**
 - Including more products
 - 64bit Windows OS supported
64 bit GDPS

1. Because of extending memory available
 - Improvement of processing speed
 - Improvement of program stability
 - Increasing number of window in GDPS

New Products

1. Rayleigh Corrected Reflectance for land user
2. Water current vector
3. Fish ground index
4. Yellow dust in ocean

Batch processing

1. When changed product algorism
 - processing maximum 1000 image
2. Applied batch processing in variety function
 - Subset image, L2 processing, L3 processing, Exporting image, Extracting pixel value of filed measurement point

User Interface

1. Developing user-friendly GUI in Combine Area, Combine Time-series/Animation, Divide Area
GOCI APPLICATIONS : Aerosol Optical Depth
GOCI APPLICATIONS: Red Tide Detection

5 August 2012
GOCI L2 Chlorophyll

Lw Composite image (6,4,2 bands)

5 August 2012
Red Tide Detection

RCA Algorithm image

Red Tide Warning
◆ **Status of Distribution Service** (20 Apr. 2011~)
◆ **Satellite data DB (for distribution)**: 42,000
◆ **Downloads (~2012)**: 113,400
◆ **Scientific Users by web**: 1006 people (Korea: 649, Others: 357)
◆ **Domestic Gov./Inst. User by ftp**: 24 (near-real-time data service)
◆ **Public User by portal site**
 - Korean portal site (http://map.naver.com; in Korean)
 - Service: L1B RGB, CHL, CDOM, SS Jpeg image (only)
 - Frequency: 8 times/day
 - Maximum daily visitors: 260,000

◆ **Redistribution site** for international scientific users
 - approved by GOCI operation committee (Jan. 2013)
 - discuss with Ministry of Oceans and Fisheries
Raw data

Radiometric / Geometric Calibration

Atmospheric correction CAL/VAL

Algorithm CAL/VAL

Level-0

Level-1

Radiance
(L_w, L_{WN})

Level-2

Products
(R_{ref}, chl, SS, DOM, Red-tide, Fishing ground information, Under water visibility, water current vector, and so on.)

GOCI Data Quality Control (Cal / Val)
Radiometric Calibration
• GOCI Radiance Restitution Process calculated with dark image (offset) and 2D gain matrix correction
• Dark Signal Variation shows very small changes.
• GOCI detector has been operated in stable.

Geometric accuracy (INR) Performance
• Within-Frame, Frame-Frame, Band-Band Registration performances are satisfied with requirement.
• In Winter season, a few date cannot be satisfied with requirement. Because of low intensity or poor circumstance, landmark for INR cannot be found enough.

Inter Slot Radiance Discrepancy (ISRD)
• The issue by sensor type (2D CMOS, frame capture method)
 • It takes 30 min to acquire one set of whole coverage.
 • The zigzag type of capture line brings about non-homogenous time interval.
• Need to clarify the cause of ISRD: straylight/ghost image, sensor calibration or polarization sensitivity, etc.
• A simple ISRD model has been tested and looks promising. Further test and improvement is needed for implementation into processing chain this year.
Atmospheric Correction

- KOSC standard atmospheric correction algorithm for GOCI has been developed.
- The result of comparison of GOCI and in situ data shows good relationship except 412nm.
- nLw comparison result with NOAA algorithm & KOSC algorithm is quite similar.

Level 2 product Validation

- Building Rrs matchup database for validation of CHL, TSS, CDOM.
- Initial validation result of TSS is R2=0.87, Δ=35%. That of CHL is 0.34.
- Results show that the bio-optical algorithms need to be improved. Semi-analytical algorithms should be considered.

GOCI Cal/Val advisory group meeting

- 1st meeting has held at Nagoya Univ. (Japan) in Nov. 2012.
- To discuss for In situ database for GOCI validation/vicarious calibration
• Evolution of GOCI Radiometric Gain
 • Monitoring of Linear Gain(G), Non-linear Gain(b) using SD & DAMD
• Evolution of GOCI Radiometric Gain (2011.~2012.)
 • Sinusoidal Variation of Radiometric Gain : ~ 2.5% (2011.)
 • Gain Evolution with same solar Azimuth/Elevation angle
 • ~0.51% (G_SD, Weekly Obs.) , ~0.14% (G_DAMD, Monthly Obs.)
 • Annual Solar angle variation : 108.4°/10.5° (AZ/EL)
 • Gain Variation(Uniformity) over FPA : ~5% (CV; STDEV/Mean)
In situ measurements
- Research vessel, Ferry box (with KIOST), Glider (with KIOST)
- Buoy, Ocean research station
 - To use Korea Operational Oceanography Network (with KIOST)
 - To cooperate neighboring countries (with Japan, China, Taiwan)
 - To join International Group (with IOCCG, Aeronet-OC)

New System
- Kite, aerostat, airborne (with KARI)
- Argo-type buoy

Uniform land Cal/Val site
- Desert, Ice, Playa

Optical Buoy located at
- An area of the convergence of North Korean Cold Current and East Korean Warm Current
- 10 km off Donghae port at a depth of 130m
- Data collected for April 24-Aug 13, 2012
Rrs Matchup Result / L2 Validation Result

◆ initial validation
 - Chla: R²=0.34, Δ=35%
 - SPM: R²=0.87, Δ=35%
 - CDOM: R²=0.18 Δ =330%

◆ Results show that the bio-optical algorithms need to be improved.
 - Semianalytical algorithms should be considered

Flow-through fluorometer for Chl_a
(courtesy of J-H Noh, KIOST)
Continued efforts for ship-based matchup comparison
 - Matchup data in the open ocean
Feedback for algorithm improvement including
 - Vicarious calibration
 - Bio-optical algorithm
Annual GOCI validation cruise
 - Foreign scientist participation encouraged
Autonomous systems
 - Aeronet-OC
 - Validation buoy
 - Flow-through system
Network/collaboration
 - Promote domestic val activities, e.g. HPLC round-robin exercise
 - International validation advisory group
 - International collaboration
GOCI Cal / Val Advisory Group Meeting

Date: Dec, 2012
Location: Nagoya University (Japan)
Attendee
 - Korea, Japan, Russia, Taiwan + China
◆ **1st GOCI PI Workshop (Oct. 29~30, 2008)**
 - 72 peoples from 11 organizations, 7 countries (36 PIs)
 - Discussed the collaboration for *Algorithm development, in-situ data acquisition, and application research*

◆ **2nd GOCI PI Workshop (Jan. 11~12, 2012)**
 - **200 more peoples** including 31 PIs, 62 domestic scientists
 - 16 sessions, 57 presentations
 - Shared the result for GOCI and satellite application research
 - Discussed GOCI application and international cooperation
 - Proposed GOCI-II user requirements

◆ **3rd GOCI PI Workshop (2014 ?)**
 - will be announced...
KOSC has many relationship for GOCI cal/val and research collaboration.
Short-term variability: Tidal Movement

- 642 composite image
- 16 April 2011
areas of relatively high turbidity (in red) gradually decreased over time

- clear water from open sea suppressed turbidity during flood tide

around the time of high tide, turbidity was remarkably lower

- settlement of suspended particulates during the transition from flood to ebb tide and resulting lull in the tidal current
Short-term variability : Sea Ice

2012.02.27 16:15

Sea Ice
Short-term variability : Sea Fog
OCEAN DATA AVERAGE ACQUISITION RATE

DAILY COMPOSITE
8 SCENES / DAY

28%

1 SCENE / DAY

10%
GOCI APPLICATIONS : Ocean Fronts
GeoKompasat-2 Development

COMS : GOCI-I, MI-I, & Ka-band
GeoKompasat-2A : MI-II (ABI)
GeoKompasat-2B : GOCI-II & GEMS

◆ GOCI Development :
 • KARI & KIOST Cooperation Development
 • Payload system - Development Company (TBD) + KARI/KIOST team
 • Bus system - KARI
◆ Supervising : KIOST
GOCI-II is focused on the coastal and global ocean environment monitoring with better spatial resolution and spectral performance for the succession and expansion of the mission of GOCI.

GOCI-II project started the development in 2012, and will be launched in 2018.

The user requirements of GOCI-II will have higher spatial resolution, 300m × 300m, and 13 spectral bands to fulfill GOCI’s user requests, which could not be implemented on GOCI for technical reasons.

GOCI-II will have a new capability, supporting user-definable observation requests such as clear sky area without clouds and special-event areas, etc. This will enable higher applicability of GOCI-II products. GOCI-II will perform observations 8 times daily, the same as GOCI’s.

The main difference between GOCI-II and GOCI is the global-monitoring capability, which will meet the necessity of the monitoring and research on the long-term climate change. Daily global observation once is planned for GOCI-II.

<table>
<thead>
<tr>
<th>Items</th>
<th>GOCI Specs</th>
<th>GOCI-II Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased band number</td>
<td>8 bands</td>
<td>13 bands</td>
</tr>
<tr>
<td>Improved spatial resolution</td>
<td>500m</td>
<td>300m</td>
</tr>
<tr>
<td>More observations</td>
<td>8 times/day</td>
<td>10 times/day</td>
</tr>
<tr>
<td>Pointable & Full Disk coverage</td>
<td>Local Area</td>
<td>Local Area + Full Disk</td>
</tr>
</tbody>
</table>
• Better Quality in GEO
 • Easy to achieve High SNR with longer Integration time and Noise Reduction with averaging of multiple acquisitions.
 • Effective 1-Day coverage of GEO is larger.

• Necessity of Global Area Observation
 • Global Obs. can enable the ocean climate change research.

1-day Composite Image (MERIS)

Ref. http://www.globvapour.info/images/NF_2_fig1_SSMI_MERIS_combined_L3_DC_20070715_TCWV_retrieval.png
◆ Spectral Bands Requirements (TBD)
 • 13 Bands (GOCI : 8 Bands)
 • Phytoplankton type verification, Enhanced Atmospheric Correction Accuracy

<table>
<thead>
<tr>
<th>Band</th>
<th>Band Center</th>
<th>Bandwidth</th>
<th>Nominal Radiance</th>
<th>Maximum Ocean Radiance</th>
<th>Saturation Radiance</th>
<th>Maximum Cloud Radiance</th>
<th>SNR @ Nominal Radiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>380 nm</td>
<td>20 nm</td>
<td>93</td>
<td>139.5</td>
<td>143.1</td>
<td>634.4</td>
<td>998</td>
</tr>
<tr>
<td>2</td>
<td>412 nm</td>
<td>20 nm</td>
<td>100</td>
<td>150</td>
<td>152</td>
<td>601.6</td>
<td>1050</td>
</tr>
<tr>
<td>3</td>
<td>443 nm</td>
<td>20 nm</td>
<td>92.5</td>
<td>145.8</td>
<td>148</td>
<td>679.1</td>
<td>1145</td>
</tr>
<tr>
<td>4</td>
<td>490 nm</td>
<td>20 nm</td>
<td>72.2</td>
<td>115.5</td>
<td>116</td>
<td>682.1</td>
<td>1228</td>
</tr>
<tr>
<td>5</td>
<td>510 nm</td>
<td>20 nm</td>
<td>55.3</td>
<td>85.2</td>
<td>122</td>
<td>665.3</td>
<td>1124</td>
</tr>
<tr>
<td>6</td>
<td>555 nm</td>
<td>20 nm</td>
<td>55.3</td>
<td>85.2</td>
<td>87</td>
<td>649.7</td>
<td>1124</td>
</tr>
<tr>
<td>7</td>
<td>620 nm</td>
<td>20 nm</td>
<td>40.3</td>
<td>67.8</td>
<td>70.5</td>
<td>616.5</td>
<td>1080</td>
</tr>
<tr>
<td>8</td>
<td>660 nm</td>
<td>20 nm</td>
<td>32</td>
<td>58.3</td>
<td>61</td>
<td>589</td>
<td>1060</td>
</tr>
<tr>
<td>9</td>
<td>680 nm</td>
<td>10 nm</td>
<td>27.1</td>
<td>46.2</td>
<td>47</td>
<td>549.3</td>
<td>914</td>
</tr>
<tr>
<td>10</td>
<td>709 nm</td>
<td>10 nm</td>
<td>27.7</td>
<td>50.6</td>
<td>51.5</td>
<td>450</td>
<td>914</td>
</tr>
<tr>
<td>11</td>
<td>745 nm</td>
<td>20 nm</td>
<td>17.7</td>
<td>33</td>
<td>33</td>
<td>429.8</td>
<td>903</td>
</tr>
<tr>
<td>12</td>
<td>865 nm</td>
<td>40 nm</td>
<td>12</td>
<td>23.4</td>
<td>24</td>
<td>343.8</td>
<td>788</td>
</tr>
<tr>
<td>13</td>
<td>PAN</td>
<td>515 nm</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

◆ User Requirements for GOCI-II Direct Broadcasting
 • Data Rate : 23Mbps
 • Service Coverage : ~ Full Disk Area
 • Data Format : (TBD)
 • Receiving Antenna on Ground Station : < 6.5m (Diameter, TBD)
GEOKomsat-2 Payloads Requirements

<table>
<thead>
<tr>
<th></th>
<th>MI-II (ABI)</th>
<th>GOCI-II</th>
<th>GEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Range</td>
<td>0.47μm-13.3μm</td>
<td>380-900nm</td>
<td>300-500nm</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>500m, 1km(VIS), 2km(IR)</td>
<td>300m</td>
<td>7.0 km</td>
</tr>
<tr>
<td>Spectral Resolution</td>
<td>400~1,000nm</td>
<td>10~40nm, 500nm</td>
<td>0.8nm</td>
</tr>
<tr>
<td>Bands</td>
<td>16</td>
<td>13</td>
<td>Hyperspectral</td>
</tr>
<tr>
<td>Coverage</td>
<td>FD, NHFD, North-East Asia, Korea Peninsula (LA)</td>
<td>2,500 x 2,500km(LA), FD</td>
<td>FD, NHFD, North-East Asia, Korea Peninsula (LA)</td>
</tr>
<tr>
<td>Observation Period</td>
<td>FD 4 times/hour</td>
<td>10 times/day</td>
<td>8 times/day</td>
</tr>
<tr>
<td></td>
<td>LA 120 times/hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation Time</td>
<td>FD 15 min, NHFD 5 min, LA 30 sec</td>
<td>< 30 min (LA)</td>
<td>30 min</td>
</tr>
</tbody>
</table>
Various Application of Geostationary Orbit Satellites could be constructed with high performance.

Planning

What fields can be fused with Geostationary satellite?
What can we obtain the NEW products from integration & fusion science?

What / How can we do integrate and apply Geostationary satellite?

Cooperation

Ocean + Meteorology + Environment + Communication

NEW Technology & Synergy
High Quality
High Accuracy
High Speed
Low Cost

Conference
Completion
Ocean Application

Original application
- Long-term climate change, carbon emissions
- Environmental monitoring for coastal/marine/land
- Real-time marine environmental monitoring (disasters reduction)
- Fishing cost saving for increased production

MI-II
- Fisheries using SST
- Marine numerical weather prediction
- Atmospheric correction precision
- Marine meteorological disasters surveillance (hurricanes, torrential rain)

GEMS
- DOM distribution research using UV data
- Improving atmospheric correction accuracy using vertical aerosol data
- Marine environment analysis accuracy improvement removal of NO2

In case of Ocean Application, **Ocean product accuracy** will be enhanced with integration of other satellite.
GEO new mission & Synergy

Efficiency
Accuracy
Low cost

Multi-sensors fusion algorithm can be installed to GDPS-II (GOCI-II Data Processing System)
A Constellation of Geostationary Ocean Color Satellites

OCAPI+

GEO-CAPE+Tempo (?)

GOCI-II+MI+GEMS
• GOCI Operation
 – There is no significant technical issue for GOCI operation.
 – To distribute 8 times GOCI images to user this year
 – To make an international mirror site for fast download: under discussing the detail conditions

• GOCI Cal/Val and Research
 – To collaborate the GOCI Cal/Val and application
 – To release the GDPS and ATBD Ver1.2
 – To strengthen the operational algorithm (WCV, FGI etc)

• GOCI-II development
 – To select the manufacturing company for GOCI-II this month
 – To propose the integrated research using 3 payloads of GeoKompasat-II

We need more collaborations for blooming the GEO OC potentials
Structure of Chlorophyll Distribution in the North-East Asian Seas

Thank you