Future Directions for NASA Ocean Color Remote Sensing

Paula Bontempi NASA Headquarters International Ocean Color Science Team Meeting 6-8 May 2013

Reinvigorate On-Orbit Constellation (1 of 2)

- OSTM/Jason-2 Launched 6/2008 Launched 2/2009 (LV Failure) Launched 3/2011 (LV Failure) Glory Aquarius/SAC-D Launched 6/2011 Suomi NPP Launched 11/2011 LDCM Launched 2/2013
- Global Precipitation Measurement (GPM) On Schedule for 2/15/2014 Launch
- Orbiting Carbon Observatory (OCO-2) On Schedule for 7/1-7/2014 Launch
- Soil Moisture Active Passive (SMAP) On Schedule for 10/31/2014 Launch
- Stratospheric Aerosol and Gas Experiment (SAGE-III/ISS) On Schedule for 3/2015 Launch

Reinvigorate On-Orbit Constellation (2 of 2)

- ICESAT-2 Confirmed for launch 12/2016
- Cyclone Global Navigation Satellite System (CYGNSS) (EVM) Formulation for launch late 2016/17
- GRACE-FO Formulation for launch 8/2017
- OCO-3/ISS Formulation for launch 2017
- Tropospheric Emissions: Monitoring of Pollution (TEMPO) (EVI) Formulation for instrument delivery 2017
- Pre-Aerosol, Cloud, ocean Ecosystem (PACE) Acquisition Strategy under evaluation, launch 2020
- Surface Water Ocean Topography (SWOT) Formulation for launch 2020

SeaWiFS (1997-2010)

This de al	132	SeaWiFS A	Aut	horized HR	PT	Stations (8	2 de	livered data)
a start of the second second second	DIR	German Aerospace	MAT	Kuala Terengganu,	PAL	Palmer Station, Antarctica	UKR	Sebastopol, Ukraine
	DLK	Center	WIAL	Malaysia	PEK	Peking University	UME	Univ. of Maine
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	DSF /	not available	MAS	Centro Espacial de	POL	not available	TND	Terra Nova Bay,
· · · · · · · · · · · · · · · · · · ·	DUN	NERC Satellite Receiving	MIND	Canarias	POR	Funchal, Madeira Island	IND	Antartica
the second s	DUN	Station	MBR	Moss Landing, California	PRC	Hang Zhou, China	TOK	Tokai University
	ECB	Gran Canaria, Spain	MCM	Mcmurdo Station,	PRE	Pretoria, South Africa	TOW	Townsville, Australia
Code Station	ECS I	Elizabeth City, NC	WICH.	Antarctica	PRM	Bremerhaven	TUP	Middle East Technical
AAD RSV Aurora Australis	FUN I	Fortaleza, Ceara, Brasil	MIR	R/V Mirai	RBN	R/V Ron Brown	TUK	Univ.
ARG CONAE, Buenos Aires	GAL	Charles Darwin Research	MLI	Mont Joli, Quebec	RES	Resolute Bay	UAF	University of Alaska,
ARM US Army Research Lab	One	Station	MLT	University of Malta	REU	La Reunion	Uni	Fairbanks
AWI R/V Polarstern	GOA 1	NIO Goa, India	MON	Ulaanbaatar, Mongolia	ROC	Taipei, Taiwan (Fisheries)	UKR	Sebastopol, Ukraine
AZO Faial, Azores	GUA (Guam	MSC	Matera, Italy	ROM	ISAC - CNR, Rome, Italy	UME	Univ. of Maine
BAR R/V Hesperides	<u>GUY</u>	Cayenne, French Guyana	NAV	NRL-SSC, MS	ROT	Rota	UMI	T/V Umitaka-Maru
Adelaide Island,	HEL I	R/V Alpha Helix	NBP	R/V Nathaniel B. Palmer	RUS	Yuzshno-Sakhalinsk	UMX	Mexico City
BAS Antarctica	HIG	Male, Maldives	NCS	Oman		Rutgers University, New	UND	University of North
Bermuda Biological	HIT	Hiroshima Inst. of Tech.	NEA	New Caledonia	RUT	Jersey		Dakota
BBS Station	HOB I	Hobart, Tasmania	NEG	Negev, Israel	SAM	American Samoa	UNE	Univ. of Nebraska
BGU Negev, Israel	IAM	Heraklion, Crete	NFL	St. John's, Newfoundland	SAN	Univ. of Santiago, Spain	UNY	MSRC SUNY
BHR Bahrain	ICM I	Barcelona, Spain	NGO	San Salvador de Jujuy,	-	National University of	UOH	University of Hawaii,
BIO Dartmouth, Nova Scotia	ICD	University of	100	Argentina	SNG	Singapore		Honolulu
BIU Bar Ilan University	IOF	Hawaii/HIGP	NOA	Palea Penteli (Athens)	SPZ	NATO, La Spezia	UPR	University of Puerto Rico
BOL ABTEMA, Bolivia	IMB	Heraklion, Crete	NOH	NOAA/NMFS Honolulu,	SSC	NRL-SSC	URG	Montevideo, Uruguay
BRL Rio Grande, Brazil	IMS	inciralti-Izmir, Turkey	HOI	Hawaii	STR	GRTR Parc d'Innovation	URU	Carrasco, Canelones,
CAL IMARPE Callao, Peru	IOS	Sidney, British Columbia	NOL	La Jolla, California	SYO	Syowa Station, Antarctica		Uruguay
CAN Gran Canaria, Spain	IPR I	R/V Shirase-Antarctica	NOR	Tromso, Norway	TAH	Papeete, Tahiti	USC	UC Santa Barbara
CAR UCAR, Boulder	IRE (Galway, Ireland	NPE	INPE, Sao Paulo, Brazil		Taiwan Fisheries	USF	Saint Petersburg, Florida
CHL Santiago, Chile	IRK I	rkutsk, Russia	NRI	Far Seas Fisheries,	IFI	Research Inst.	UST	Stockholm University
CMR Heraklion, Crete	IRM 1	MAZARA DEL VALLO	- TICI	Tokyo, Japan		Terra Nova Bay,	UTX	Univ. of Texas
IMGA-CNR - Bologna,	IME	AMSTEC, Yokosuka,	NSG	GSFC HRPT, NASA,	INB	Antartica	VEN	Caracas, Venezuela
CNR Italy	51415	lapan		MD	TOK	Tokai University	WAS	Perth, Australia
CON Concepcion, Chile	KEN I	Malindi, Kenya	NTO	National Taiwan Ocean	TOW	Townsville, Australia	WFF	Wallops Flight Facility
COS Costa Rica	<u>KIT</u>	Kitami, Japan	0	University	TUP	Middle East Technical	WNZ	Wellington, New Zealand
CRI ACRI, France	KOR I	Korea Ocean R & D Inst.	NTU	Taipei, Taiwan	TUR	Univ.	YOK	Yokohama
CSC Charleston, SC	KUS I	Hong Kong, China	OMA	(Oceanography)	UAE	University of Alaska,	ZTI	AZTI, Spain
DEN University of Copenhagen	LSU	Louisiana State Univ.	OMA	Dinadaa China	Unr	Fairbanks		
			OKS	Qinguao, China	12			

and the

SeaWiFS (1997-2010)

DigitalGlobe commits:

1. to provide to NASA in digital form via a mutually agreed upon distribution mechanism, access to all of the SeaWiFS HRPT data that currently reside in the DigitalGlobe digital archive from years 1997-2010 along with license for use & distribution as described below.

2. to provide to NASA a copy of DigitalGlobe's 8mm tape archive of HRPT data acquired during the OrbView-2 mission (as-is, in unknown format).

3. to allow NASA to request copies of all SeaWiFS HRPT data collected by remote ground stations (foreign and domestic) for incorporation into the NASA archive. These stations include those that were under contract to DigitalGlobe, those that were operating under the NASA research license and those that may have been operating independently

4. to allow all ground stations that may have collected data under contract to DigitalGlobe or who purchased a decryption license from DigitalGlobe, *to release their SeaWiFS data holdings to NASA without fear of violating the terms of their agreement with DigitalGlobe*.

5. to provide assistance to NASA with the decryption of HRPT data, or to supply NASA with the ability to prepare decryption keys (to the best of our current capacity).

6. to agree to place all of the OrbView-2 (SeaWiFS) data collected during the mission (1997 - 2010) in GAC, LAC or HRPT resolution into the public domain including those periods that are less than five years old.
**If you wish to contribute data: gene.c.feldman@nasa.gov

MODIS Aqua and Terra

- Terra (12/1999-present) and Aqua (5/2002-present)
- Undergoing Senior Review (mission extension review) in 2013
- Partial reprocessing of MODIS Aqua (2011-2013 period only) recently completed to maintain instrument calibration.
- MODIS Terra reprocessing will follow, using MODIS Aqua as a calibration source.
- Updates at NASA Ocean Color Research Team splinter Monday, 6 May @ 1330.

Suomi-NPP VIIRS (2011-present)

- VIIRS is performing well. Significant degradation of radiometric sensitivity in the NIR/SWIR has been observed, but is stabilizing.
- NASA is supporting the evaluation of the operational products from NOAA (Level-2:EDRs), while also evaluating the potential of the instrument to support continuity of ocean color science.
- To evaluate the instrument capabilities, the OBPG has:
 - developed a continuous instrument calibration based on the solar diffuser measurements (verified against lunar measurements).
 - applied a vicarious calibration based on MOBY.
 - generated a suite of products consistent in algorithm and format with MODIS and SeaWiFS standard products.

products available from oceancolor web for community evaluation.

Updates at NASA Ocean Color Research Team splinter – Monday, 6 May @ 1330

International Space Station: Hyperspectral Imager for the Coastal Ocean (HICO)

- imaging spectrometer based on PHILLS airborne imaging spectrometers
- HICO is the first spaceborne imaging spectrometer designed to sample the coastal ocean
- Sample selected coastal regions at 90 m with full spectral coverage (380 to 960 nm at 5.7 nm intervals) + a high signal-to-noise ratio
- Launched on the H-2 Transfer Vehicle (HTV) 10 September 2009 mounted on the JEM-EF – first imagery September 25, 2009
- Turned over to NASA in late 2012
- NASA's goal is to create opportunity for international tasking and free and open data policy for everything collected (including the historical data)
- On 2 May 2013, NRL received concurrence from the Navy for the release of all HICO data collected since 1 January 2013 to the NASA oceancolor web
 - NASA is working with NRL to transfer the Level 0 data and processing software to NASA GSFC
- For all data taken prior to 2013, NRL/ONR have set up a systematic review of the archive to take place at a working meeting on 10 June 2013.
- Data and tasking policy is drafted, release is TBD.
- Planned instruments funded by NASA/HEOMD, ESD funding for analysis₉
 - Hyperspectral Follow-on to HICO (under consideration)

Pre-Aerosol, Cloud, and ocean Ecosystem (PACE) Mission

Pre-Aerosol, Cloud, and ocean Ecosystem (PACE) is an ocean color, aerosol, and cloud mission that follows the 2010 report – "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space Science". It will use a global ocean color sensor for ocean ecology and biogeochemistry and, ultimately, improve the climate-carbon and climate-ecology model predictions.

Primary Science Objectives

- Understand (and quantify) global biogeochemical cycling and ecosystem function in response to anthropogenic and natural environmental variability and change
- Understand (and quantify) the role of aerosols and clouds in physical climate (the largest uncertainty)
- Extend key Earth system data records on global ocean ecology, biogeochemistry, clouds, and aerosols

Partners	• TBD
Risk	8705.4 Payload Risk Class C
Launch	• 2019/2020
Orbit	97 deg inclination; 650 km altitude; sun synchronous
Duration	• 3 year
Payload	Ocean color instrument; potential for a polarimeter
LCC	• \$700 – 850M

Technical advancement in PACE

PACE Applied Science/Applications

PACE SDT Report

NASA

- In 2012 NASA competed a Science Definition Team (SDT) to define mission science requirements
- In some cases, the SDT is very prescriptive in technical requirements and instrumental approaches. This is based on the experience that the OC community has accumulated from CZCS through present.
- NASA accepts the SDT report as input, but not as programmatic requirements. We will consider the report and its recommendations as we prepare for the mission implementation.

Threshold Ocean Mission Requirements

Orbit	sun-synchronous polar orbit
	equatorial crossing time between 11:00 and 1:00
	orbit maintenance to ±10 minutes over mission lifetime
Global Coverage	2-day global coverage to solar zenith angle of 75°
-	mitigation of sun glint
	multiple daily observations at high latitudes
	view zenith angles not exceeding $\pm 60^{\circ}$
	mission lifetime of 5 years
Navigation and	pointing accuracy of 2 IEOV and knowledge equivalent to 0.1 IEOV over the full range of viewing
Registration	geometries (e.g., scan and tilt angles)
	pointing litter of less than 0.01 IEOV between any adjacent spatial samples
	snatial hand-to-hand registration of 80% of one IEOV between any two hands without resampling
	simultaneity of 0.02 second (to ensure co-registration of spectral bands to within 80% of one IFOV
	considering satellite along-track motion)
Instrument	characterization of all detectors and optical components through monthly lupar observations
Performance	through Farth-viewing port
Tracking	\square characterization of instrument performance changes to $\pm 0.2\%$ within the first 3 years and
	maintenance of this accuracy thereafter for the duration of the mission
	monthly characterization of instrument spectral drift to an accuracy of 0.3 nm
	doily measurement of dark current and observations of a calibration target/source, with knowledge
	of daily calibration source degradation to ~0.2%
Instrument	Prelaunch characterization of linearity, response versus view angle (PV//A), polarization sensitivity
Artifacts	radiometric and spectral temperature sensitivity, high contrast resolution, saturation, saturation
Architecto	recovery crosstalk radiometric and hand-to-hand stability onhoard calibrator performance (e.g.
	hidirectional reflectance distribution of a diffuser, etc.) and relative spectral response
	prelaunch absolute calibration of 2% and on-orbit absolute calibration accuracy (before vicarious
	calibration) of better than 5%
	\bigcirc overall instrument artifact contribution to TOA radiance of <0.5% after correction
	image striping to $< 0.1\%$ in calibrated TOA radiances
	crosscalk contribution to radiance uncertainties 0.1% at 1
	polarization sensitivity of <1% and knowledge of nolarization sensitivity to < 0.2%
	polarization sensitivity of size and knowledge of polarization sensitivity to so.270
	\square = 10 detector saturation for any science measurement ballos at L _{max} = P_{10}/A_{0} of zEV for the optice view angle range and by z0 EV for view angles that differ by loss than 1°
	KvvA of <5% for the entire view angle range and by <0.5% for view angles that differ by less than 1
	Stray light contamination of the instrument < 0.2% of E _{typ} 5 pixels away from a cloud
	radiance to counte relationship obstactorized to 0.1% over full dynamic range (from 1, to 1,)
Enotial	a ladiance-to-counts relationship characterized to 0.1% over full dynamic range (nom L _{typ} to L _{max})
Spatial Resolution	 Global spatial coverage of 1 km x 1 km (±0.1 km) along-track (nadir)
Atmospheric	retrieval of [] (]), for open-ocean, clear-water conditions and standard marine atmospheres with
Corrections	an accuracy of the maximum of either 5% or 0.001 over the wavelength range $400 - 710$ nm
	Two NIR atmospheric correction bands (865 nm and either 820 or 940 nm)
	NIIV band centered near 250 pm
	SWIP bands centered at 1240, 1640, and 2130 nm
Science Spectral	E pm spactral resolution from 2E0 to 200 pm
Bands	complete ground station downlink and archival of 5 nm data
Signal_to_poise	Complete ground station downlink and archival of 5 min data SNP at accord to a \$1000 from 260 to \$000 pm; 200 @ 250 pm; 600 @ NIP bands; 250, 100, and 15 @
Signal-to-noise	1240 1640 9 2120 mm
Mission	1240, 1040, & 2130 IIII
WISSION	iuii reprocessing capability of all PACE data at a minimum frequency of 1 – 2 times annually
	Integrated process studies, assessments, and cal/val studies
	Inree-nour data latency and direct broadcast of aggregate spectral bands
1	Robust data and results distribution system

http://decadal.gsfc.nasa.gov/pace.html

ESD Mission Development Path Forward

- Proposed Mission Science objectives provided by the SDT
- The PACE mission budget has been identified by the Earth Science Division, supporting a launch in 2019/2020
 - Budget is supported by multiple instrument and mission design lab cost studies
- Mission acquisition options are well understood and in discussion within NASA.
 - As a general rule within the ESD, competition is preferred if there are two or more viable mission and/or instrument developers interested.
 - Let is one of the considerations as we decide on the approach.
- + In FY2013/Q1 FY2014, NASA plans to:
 - Release an RFI for ocean color vicarious calibration approaches and instrumentation (21 responses, reviewed, next step underway)
 - Define the mission acquisition approach
 - Establish the expected partnership issues such as contributed instruments
 - Define the baseline mission science objectives
 - Release AO to the world, preceded by a draft AO for comment

Aerosol, Cloud, ocean Ecosystem (ACE) Mission Description

ACE is a aerosol-cloud and ocean ecosystem mission

- "... to reduce the uncertainty in climate forcing in aerosol-cloud interactions and ocean ecosystem CO2 uptake" Decadal Survey pg 4-4
- Aerosol-cloud component science objectives are:
- 1. decrease the uncertainty in aerosol forcing as a component in climate change
- 2. quantify the role of aerosols in cloud formation, alteration of cloud properties and changes in precipitation.
- Ocean ecosystem goals are to:
- 1. characterize and quantify changes in the ocean biosphere
- quantify the amount of dissolved organic matter, carbon, and other biogeochemical species to define the role of the oceans in the carbon cycle (e.g., uptake and storage).
- The ocean ecosystem imager needs aerosol measurements to optimize their retrievals which is an important reason for the combined payloads.

FY11-12 Deliverables

Complete Draft Report including: 1.Scientific basis for selection of measurement requirements including Science Traceability Matrices for aerosols, clouds, ocean ecosystems, aerosol-cloud interactions and aerosol-ocean interactions 2.Instrument concept descriptions 3.Mission implementation options including the utilization of 1 and 2 spacecraft

Develop white paper proposals for short and medium term activities, including theory, data analysis and **field campaigns**, to better define ACE science and reduce instrument development risk

Mission Implementation and Challenges

ACE Payload currently considers the following instrument candidates:

- 1. Lidar for assessing aerosol/cloud heights and aerosol properties. (TRL 4-6)
- 2. Dual frequency Doppler cloud radar for cloud properties and precipitation (TRL 4-6)
- 3. Multi-angle, swath polarimeter for imaging aerosol and clouds (TRL 4-6)
- 4. Ocean color multi-channel spectrometer for ocean ecosystems (TRL 5)
- 5. IR imager for cloud temperatures and heights (TRL 6)
- 6. High frequency swath radiometer for cloud ice measurements (TRL 6)
- 7. Low frequency swath radiometer for precipitation measurements (TRL 8)
- 8. Microwave temperature/humidity sounder (ATMS, TRL 9)

It is anticipated that all instruments will be openly competed. The payload may require more than one spacecraft.

Instruments in gray were mentioned in the NAS DS ACE description. The Science Working Group considers these over-guide instruments/measurements critical to the mission.

Current thinking: ACE in two parts flying in formation; the first launch a spacecraft with passive sensors (ocean color instrument and aerosol/cloud polarimeter), the second launch a spacecraft with active instruments (HSR Lidar and multifrequency Doppler radar. Additional sensors (e.g., gray instruments from lower left quadrant) TBD.

GEO-CAPE

- GEOstationary Coastal and Air Pollution Events
- Recommendation to implement mission as secondary payloads hosted on commercial geostationary satellites (Fishman et al., BAMS, 2012)
- TEMPO (Tropospheric Emissions: Monitoring of Pollution) selected Nov. 2012 through NASA's Earth Venture Instrument solicitation

GEO

Air quality

Ocean color from space

- ~2019 launch on geo communications satellite (2-year operational mission)
- UV-Visible grating spectrometer to provide hourly tropospheric ozone, NO2 and aerosol cycles (subset of GEO-CAPE atmosphere measurements)
- TEMPO selection does not imply acceleration of full GEO-CAPE mission
- GEO-CAPE is presently planned for launch no earlier than 2022
- Open Community workshop planned May 21-23, 2013 at NASA Ames
 - Planning GOCI-II and GEO-CAPE development workshop

Ocean Color Mission Component

- Focus on U.S. & other North and South American coastal waters
- Science studies guiding recommendations on ocean color requirements
 - Planning field campaign in northern Gulf of Mexico for September 2013
- Completed coastal oceans ecosystem white paper describing and justifying mission science and requirements; to publish as NASA TM (2013)
- Collaboration between KOSC GOCI team and NASA GSFC moving forward
- Plans to increase dialogue with international community in 2013

http://geo-cape.larc.nasa.gov/

NASA OB&B Research – Research Opportunities in Space and Earth Sciences

ROSES 2013 - <u>http://nspires.nasaprs.com/</u> - Released 14 February 2013

- Carbon Cycle Science 6 topics, four federal agencies, US\$12M/yr 386 proposals
- NASA Data for Operation and Assessment 4 topics, US\$2M/yr –14 NOIs [15 May 2013]
 - Operational short-term weather prediction, climate projection assessment, ecological forecasting
- The Science of Terra and Aqua 3 topics ~US\$11.5M/yr 200 NOIs [20 May 2013]
 - Science Data Analysis + Multiplatform and sensor data fusion
 - Algorithms New Data Products
 - Real- or Near-Real-Time Data Algorithms
- Ocean Biology and Biogeochemistry ~US\$500K/yr 12 NOIs [30 May 2013]
 - Scoping proposals for field campaigns (e.g., ICESCAPE)
- The Science of Terra and Aqua Algorithms Existing Data Products ~US\$2.5M/yr [NOIs 15 May 2013, Proposals 1 July 2013]
- PACE Science Team TBD for 2013

ROSES 2012 - <u>http://nspires.nasaprs.com/</u> - Released 14 February 2012
 Interdisciplinary Research in Earth Science – 5 topics, US\$12M/yr, 145 proposals

- Understanding Earth System Vulnerabilities to Climate Extremes
- Impacts of Changing Polar Ice Cover
- Water and Energy Cycle Impacts of Biomass Burning
- Impacts of Population growth on watersheds and coastal ecology
- Role of Permafrost in a Changing Climate

