

Atmospheric correction over turbid waters

Cédric Jamet IOCS meeting Darmstadt, Germany June, 6, 2013 cedric.jamet@univ-littoral.fr

• 15 years of continuous ocean satellite data:

- ~13 years for SeaWiFS
- ~10 years for MERIS
- ~10 years of MODIS-AQUA (and still counting)
- VIIRS (2012-)
- OLCI (2015-)
- GOCI (2010-)

→ Possibility to study inter-annual and decennal variability of biogeochemical parameters in open but <u>also in coastal</u> <u>waters</u>

Need for accurate atmospheric correction algorithms

 \rightarrow Need to look at the existing algorithms

- Several AC developed for the past 12 years \rightarrow no assessment of differences
- Future ocean color sensors: high spatial resolution, high radiometric resolution, other wavelengths
- \rightarrow Highest possibility to study coastal waters
- <u>Need for guidances on using the already developed AC</u> (see number of requests on the forum of oceancolor.gsfc.nasa.gov)

- Coastal waters more and more investigated in ocean color
- But more challenging than open ocean waters:
 - temporal & spatial variability
 - satellite sensor resolution
 - satellite repeat frequency
 - validity of ancillary data (SST, wind)
 - resolution requirements
 - Land contamination (adjacency effects)
 - non-maritime aerosols (dust, pollution)
 - region-specific models required?
 - absorbing aerosols
 - suspended sediments & CDOM
 - complicates estimation of $R_{rs}(NIR)$
 - complicates BRDF (f/Q) corrections
 - sensor saturation
 - shallow waters

- Coastal waters more and more investigated in ocean color
- But more challenging than open ocean waters:
 - temporal & spatial variability
 - satellite sensor resolution
 - satellite repeat frequency
 - validity of ancillary data (SST, wind)
 - resolution requirements
 - Land contamination (adjacency effects) Robert Frouin
 - non-maritime aerosols (dust, pollution)
 - region-specific models required?
 - absorbing aerosols
 - suspended sediments & CDOM
 - complicates estimation of R_{rs}(NIR)
 - complicates BRDF (f/Q) corrections
 - sensor saturation
 - shallow waters

- Coastal waters more and more investigated in ocean color
- But more challenging than open ocean waters:
 - temporal & spatial variability
 - satellite sensor resolution
 - satellite repeat frequency
 - validity of ancillary data (SST, wind)
 - resolution requirements
 - Land contamination (adjacency effects)
 - non-maritime aerosols (dust, pollution)
 - region-specific models required?
 - absorbing aerosols
 - suspended sediments & CDOM
 - complicates estimation of R_{rs}(NIR)
 - complicates BRDF (f/Q) corrections
 - sensor saturation
 - shallow waters

📥 Sean Bailey

- Coastal waters more and more investigated in ocean color
- But more challenging than open ocean waters:
 - temporal & spatial variability
 - satellite sensor resolution
 - satellite repeat frequency
 - validity of ancillary data (SST, wind)
 - resolution requirements
 - Land contamination (adjacency effects)
 - non-maritime aerosols (dust, pollution)
 - region-specific models required?
 - absorbing aerosols
 - suspended sediments & CDOM

complicates estimation of R_{rs}(NIR)

- complicates BRDF (f/Q) corrections
- sensor saturation
- shallow waters

Objectives: 5% for absolute radiances and 2% for relative reflectances

Objectives: 5% for absolute radiances and 2% for relative reflectances

Classic Black Pixel Assumption (1/2)NIR bands $\rho_r(\lambda) - \rho_r(\lambda) = \rho_{ra}(\lambda) + \rho_a(\lambda) = \rho_A(\lambda)$

Hypothesis: absorbing ocean $\rightarrow \rho_w(\lambda)$ negligeable

Classic Black Pixel Assumption (1/2) NIR bands $\rho_{t}(\lambda) - \rho_{r}(\lambda) = \rho_{ra}(\lambda) + \rho_{a}(\lambda) = \rho_{A}(\lambda)$ Hypothesis: absorbing ocean $\rightarrow \rho_{w}(\lambda)$ negligeable 765nm 865nm 670nm 2.5 -O--- O99 M50 $\theta = 0^{\circ}, \theta = 45^{\circ}, \phi = 90$ - M70 calculate aerosol ratios, ε : - M90 -- M99 2 C50 C70 C90 _<mark>ρ</mark>a(748) C99 $\epsilon(748,869) \sim$ ε (λ ,865) T50 $\rho_{a}(869)$ 1.5 - T90 T99 <mark>ρ</mark>a(λ) ε(λ,869) $\rho_{a}(869)$ 0.5 400 500 600 700 800 900 Wavelength [nm]

Classic Black Pixel Assumption (1/2)NIR bands $\rho_r(\lambda) - \rho_r(\lambda) = \rho_{ra}(\lambda) + \rho_a(\lambda) = \rho_A(\lambda)$

Hypothesis: absorbing ocean $\rightarrow \rho_w(\lambda)$ negligeable

Determination of aerosols models

τ, α

Calculation of ρ_A and t

Classic Black Pixel Assumption (2/2) Visible bands, $(\rho_t(\lambda) - \rho_r(\lambda) - \rho_A(\lambda))/t(\lambda) = \rho_w(\lambda)$

no one uses the "black pixel assumption" anymore

Courtesy of PJ Werdell

no one uses the "black pixel assumption" anymore

Courtesy of PJ Werdell

Approaches to account for $R_{rs}(NIR) > 0 sr^{-1}$ overlap

many approaches exist, here are a few examples:

- assign aerosols (ϵ) and/or water contributions (Rrs(NIR))
 - e.g., Hu et al. 2000, Ruddick et al. 2000
- use shortwave infrared bands
 - e.g., Wang & Shi 2007
- use of UV bands

He et al., 2012

correct/model the non-negligible R_{rs}(NIR)

Lavender et al. 2005	MERIS
Bailey et al. 2010	used in SeaWiFS Reprocessing 2010
Moore et al. 1999	MERIS/OLCI
Wang et al. 2012	GOCI

use a coupled ocean-atmosphere optimization/inversion

e.g., Chomko & Gordon 2001; Stamnes et al. 2003; Jamet et al., 2005; Ahn and Shanmugam, 2007; Doerffer & Schiller, 2008; Kuchinke et al. 2009; Schroeder et al., 2007; Steinmetz et al., 2010; Brajard et al., 2012

Evaluation

- Evaluation of AC already exists in journals:
 - SeaWiFS: Zibordi et al. (2006, 2009); Banzon et al., 2009; Jamet et al. (2011);
 - MODIS-AQUA: Zibordi et al. (2006, 2009); Wang et al. (2009), ;Werdell et al., 2010; Goyens et al. (2013)
 - MERIS: Zibordi et al. (2006, 2009); Cui et al. (2010);
 Kratzer et al. (2010); Melin et al. (2011)
- BUT most of the time only about one specific AC (with eventually comparisons with the official AC)
- Only few papers on round-robin

Approaches to account for $R_{rs}(NIR) > 0 sr^{-1}$ overlap

many approaches exist, here are a few examples:

• assign aerosols (ϵ) and/or water contributions (Rrs(NIR))

```
e.g., Hu et al. 2000, Ruddick et al. 2000
```

- use shortwave infrared bands
 - e.g., Wang & Shi 2007
- use of UV bands

He et al., 2012

• correct/model the non-negligible $R_{rs}(NIR)$

Lavender et al. 2005 MERIS

Bailey et al. 2010 used in SeaWiFS Reprocessing 2010

Moore & Lavender, 1999 MERIS/OLCI

Wang et al. 2012 GOCI

use a coupled ocean-atmosphere optimization/inversion

e.g., Chomko & Gordon 2001; Stamnes et al. 2003; Jamet et al., 2005, Ahn and Shanmugam, 2007; Doerffer & Schiller, 2008; Kuchinke et al. 2009; Schroeder et al., 2007; Steinmetz et al., 2010; Brajard et al., 2012

	R	Intercept	Slope	RE	RMSE	Bias	L _{wn} <0	Table 3			
nLw(412)								Statistical r	esults for th	e retrieved	
SIMIL	0.75	- 0.015	0.93	45	0.381	-11	15		RMS	Relativ	
STD	0.86	0.021	0.90	35	0.262	-2	2		141167	(%)	
NIR-SWIR	0.84	0.036	0.90	36	0.271	1	1			(~)	
NN	0.81	0.214	0.70	31	0.270	11	0	nL _w (412)			
								S03	0.322	31.36	
nLw(443)								R00	0.360	36.81	
SIMIL	0.86	-0.025	1.00	30	0.357	-4	4	K09	0.303	30.02	
STD	0.93	0.009	0.98	21	0.241	1	0				
NIR-SWIR	0.92	0.023	0.99	21	0.254	3	0	nLw(443)			
NN	0.86	0.246	0.71	24	0.323	3	0	S03	0.318	21.81	
								ROO	0.328	23.35	
nLw(488)								K09	0.322	24.81	
SIMIL	0.92	- 0.075	1.04	20	0.351	-3	0				
STD	0.95	-0.052	1.04	13	0.263	-0.2	0	nl w(490)			
NIR-SWIR	0.95	-0.04	1.04	13	0.274	1	0	\$03	0331	14 97	
NN	0.91	0.357	0.88	27	0.385	20	0	ROO	0.360	1636	
								K00	0.412	20.53	
nLw(531)								1003	0.412	20.73	
SIMIL	0.92	-0.022	0.98	14	0.32	-4	0	nl w(510			
STD	0.95	-0.024	0.99	11	0.269	-3	0	nLW(510)		15 13	
NIR-SWIR	0.94	- 0.015	0.99	11	0.273	-2	0	203	0.357	15.15	
NN	0.94	0.273	0.954	19	0.338	16	0	KOU	0.393	17.15	
								K09	0.340	14.54	
nLw(547)								1 1000	25		
SIMIL	0.91	- 0.003	0.96	14	0.329	-4	0	nLw(555)	0.055		
STD	0.93	- 0.02	0.98	11	0.286	-3	0	\$03	0.355	15.24	
NIR-SWIR	0.93	-0.011	0.98	11	0.288	-2	0	ROO	0.381	17.39	
NN	0.92	0.232	0.93	15	0.315	10	0	K09	0.388	17.64	
nLw(667)								nLw(670)			
SIMIL	0.81	- 0.046	0.90	33	0.136	-26	0	S03	0.129	35.27	
STD	0.87	-0.075	1.00	30	0.12	-25	0	ROO	0.149	42.92	
NIR-SWIR	0.86	-0.07	1.00	30	0.121	-23	0	K09	0.121	32.32	
NN	0.85	-0.001	0.85	22	0.107	-15	0				

Statistical results for the retrieved values of $nL_w(\lambda)$ obtained with S03, R00 and K09.

R Slope Intercept е ептог 0.72 1.02 -0.080.68 0.85 -0.080.68 0.86 0.004 0.81 1.00 -0.020.79 0.89 -0.020.85 0.76 0.01 0.87 0.94 0.02 0.85 0.86 0.04 0.85 1.07 0.08 0.85 0.90 0.03 0.83 0.81 0.09 0.82 0.89 0.14 0.80 0.93 0.01 0.75 0.81 0.11 0.73 0.94 0.07 0.68 0.85 -0.030.60 0.58 0.01 0.68 0.61 0.03

The numbers in italic represent the best statistical results.

Goyens et al., 2013

Jamet et al., 2011

Jamet et al., 2011

Goyens et al., 2013

Goyens et al., 2013; Vantrepotte et al., 2012

Approaches to account for $R_{rs}(NIR) > 0 sr^{-1}$ overlap

many approaches exist, here are a few examples:

- assign aerosols (ϵ) and/or water contributions (Rrs(NIR))
 - e.g., Hu et al. 2000, Ruddick et al. 2000
- use shortwave infrared bands
 - e.g., Wang & Shi 2007
- use of UV bands

He et al., 2012

• correct/model the non-negligible $R_{rs}(NIR)$

Lavender et al. 2005 MERIS Bailey et al. 2010 used in SeaWiFS Reprocessing 2010 Moore & Lavender 1999, MERIS/OLCI Wang et al. 2012 GOCI

use a coupled ocean-atmosphere optimization/inversion

e.g., Chomko & Gordon 2001; Stamnes et al. 2003; Jamet et al., 2005; Ahn and Shanmugam, 2007; Doerrfer & Schiller, 2008; Kuchinke et al. 2009; Schroeder et al., 2007; Steinmetz et al., 2010; Brajard et al., 2012

Kratzer et al., 2010

Fig. 6. Comparisons between satellite retrieved and in situ measured normalized water-leaving radiances. (a) Locations of the in situ measurement of normalized water-leaving radiances on 5 April 2003 (marked as stars); (b) comparison at station HD34; (c) comparison at station HD35; (d) comparison at station HD36; (e) comparison at station HD37.

USE OF UV BANDS

Fig. 4. The L_{wn} retrieved by Aqua/MODIS on 5 April 2003 using the UV-AC(412nm) algorithm (unit: mW/(cm²·µm·sr)). Arrows in the sub-image of 412nm indicate the Subei Coastal Current (SCC) and the Taiwan Warm Current (TWC).

Fig. 5. The L_{uw} retrieved by Aqua/MODIS on 5 April 2003 using the SeaDAS 6.3 based on the SWIR/NIR-AC algorithm (unit: mW/(cm²·µm·sr)).

Conclusions

- Several methods exist today → Difficult to estimate which one is the best
- All methods have advantages and limitations
- Not sure accuracy is reached for short visible wavelengths
- Still work to do or the actual accuracy is enough for biooptical applications???

Why a new IOCCG WG?

- Complement of the IOCCG report #10:

 Atmospheric Correction for Remotely-Sensed
 Ocean-Colour Products » (Wang, 2010)
 →Update (could also be an update of IOCCG report #3)
- This WG focused mainly on open ocean waters
- And in coastal waters??
- Need for guidances on using the already developed AC

$$\rightarrow$$
 Purpose of this new WG

Summary

- <u>Goal</u>: Inter-comparison and evaluation of existing AC algorithms over turbid/coastal waters
- \rightarrow Understanding retrievals differences between algorithms
- <u>Challenge</u>: to understand the advantages and limitations of each algorithm and their performance under certain atmospheric and oceanic conditions
- Only focus on AC algorithms that deal with a non-zero NIR water-leaving radiances.
- High demand for AC guidelines
- Outputs timely
- \rightarrow <u>Guidances on the use of AC over turbid waters</u>
- → <u>Recommendations for improving and selecting the optimal</u>
 <u>AC</u>
- Not a sensor-oriented exercise

Questions

- How well do the aerosols need to be retrieved?
- Does the technique matter?
- How good is the extrapolation from SWIR to NIR to VIS?
- How to improve AC with the historic wavelengths?
 - Better bio-optical models
 - New contrains (such as relationships between Rrs, cf
 Poster of Goyens et al.)
 - Regional AC?
- Do we really need extra wavelengths in NIR/SWIR? What info can offer the future satellite sensors?

Evaluation of AC

- Can round robin lead to improvements?
 - What can we learn?
 - Range of validity and advantages
 - Limitations
 - Sensitivity studies
 - Fixed aerosols \rightarrow Variation/change of the bio-optical model
 - Fixed bio-optical model → Variation/change of the aerosol models
 - Uncertainties propagation and budget on the hypothesis
 - Ruddick et al. (2000)
 - Bayseian statistics for NN (Aires et al., 2004a, 2004b, 2004c)
 - Uncertainties on the NN parameters (weights)
 - Uncertainties on the outputs
 - Others ?

Evaluation of AC

- Can round robin lead to improvements?
 - What can we learn?
 - Drawbacks and advantages
 - Limitations
 - Sensitivity studies
 - Fixed aerosols → Variation/change of the bio-optical model
 - Fixed bio-optical model → Variation/change of the aerosol models
 - Uncertainties propagation and budget on the hypothesis
 - Ruddick et al. (2000)
 - Neukermans et al., (2012)
 - Bayseian statistics for NN (Aires et al., 2004a, 2004b, 2004c)
 - Uncertainties on the NN parameters (weights)
 - Uncertainties on the outputs

Classification of Lw spectra per water type

- 4 water type classes defined by Vantrepotte et al. (2012)

D'Alimonte et al. (2003)

Evaluation of the algorithms as a function of the water type

We don't have any mathup for Class 3 (very turbid water masses)!

Goyens et al., 2013