

MERIS, OLCI and related in-situ data policies

Henri Laur et al.

Earth Observation Programmes
European Space Agency

International Ocean Colour Science, Darmstadt, 6 May 2013

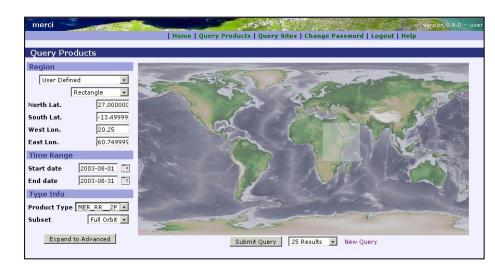
MERIS data access (1/2)

✓ MERIS data:

Reduced Resolution (1km), Full Resolution (300 m)

L1B products (calibrated TOA radiances, geolocated)

L2 products → MERIS product handbook


3rd reprocessing completed, 4th reprocessing in 2015

✓ ESA EO data policy:

- → nominally **open and free of charge** (after user registration)
- → in the specific case of MERIS Full Resolution, maximum quota granted following submission of user project proposal (this step will be removed once FR data are systematically processed)
- → data redistribution by collaborative organisations possible after specific agreement with ESA (user registration and reporting requested): MERIS data redistribution through NASA.

✓ MERIS data nominal access:

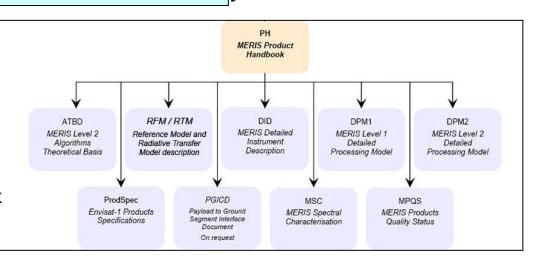
- → MERCI system for archived Reduced Resolution data access, system allows geographical extraction, time extraction, and bulk download.
- → EOLI (interface with ESA Order Desk for Full Resolution data access)

MERIS data access (2/2)

1- Development of alternative ways to provide data:

- Processing on demand → G-POD
 - user software plug-in: access to online archive
- Processing forums → ODESA
 - processing source codes L1→ L2
 - alternative processing algorithms (non-official)
 - auxiliary data files management
 - local processing
- User toolboxes → BEAM
 - image processing, analysis

New concept: User exploitation platforms



the data do not go to the user anymore, the users go to the data

2- Open access to MERIS data documentation:

ATBD, **DPM**, Product Spec, Reference Model, Instrument description, Validation Report...etc....

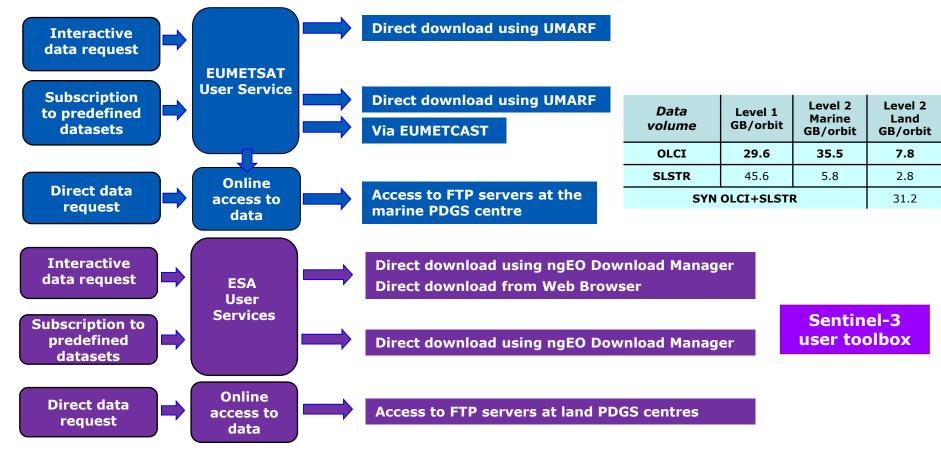
→ MERIS Product Handbook

OLCI data access (1/2)

✓ Sentinel-3 OLCI data:

- → Reduced Resolution (1km), Full Resolution (300 m)
- → L1B products (calibrated TOA radiances, geolocated)
- → L2 products → see poster Santella et al.
- → Systematic Processing in Real Time (<3h) and offline (after few days)

✓ Sentinel data policy:


Joint Principles for a GMES Sentinel data policy (2009 approved ESA document)

- Anybody can access acquired Sentinel data; in particular no difference is made between public, commercial and scientific use and in between European or Non-European users
- ➤ The licenses for the Sentinel data itself are **free of charge** (...)
- ➤ EC presently drafting a GMES data and information policy, based on the Joint Principles (see above) in the shape of a Delegated Regulation, to be approved in 2013.

OLCI data access (2/2)

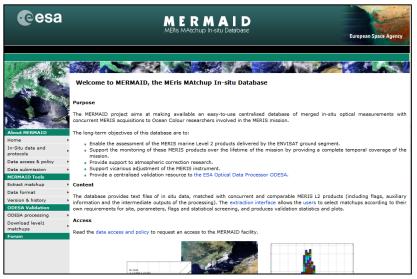
1- Sentinel-3 OLCI data access through the Core Ground Segment:

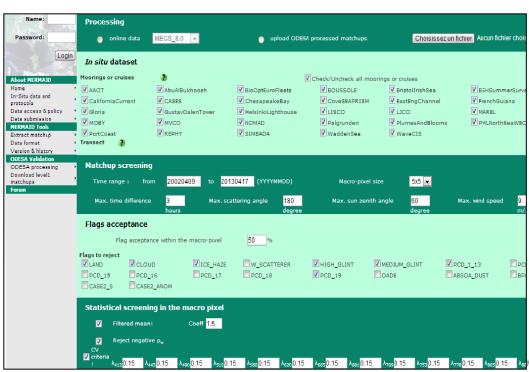
2- Additional access through the Collaborative Ground Segment (non GSC-funded):

- a **supplementary access** to Sentinel Missions data e.g. either through mirror sites or specific data products ...
- the frame for international cooperation

In-situ data access

MERIS Optical Measurements Protocols


MERMAID provides valuable data for MERIS calibration and validation activities, and therefore is essential to understand the origin of the in-situ data, the methods by which the measurements were made and the data processing stages.


MERMAID consists of datasets from PIs using a variety of measurement systems and following different measurement protocols, including SeaPRISM CIMEL, TACCS, fixed buoys, handheld radiometers and profiling instruments.

Accompanying the database is a comprehensive document overviewing MERMAID and describing these protocols: the MERIS Optical Measurement Protocols.

MERMAID access:

http://hermes.acri.fr/mermaid/

MERMAID dataset (1/4)

The following table lists the matchup datasets in MERMAID, the location CSA

Dataset	ΡΙ	Location	Lat/Lon	In-situ parameters available	Number of matchu (MEGS 8.0)
ААОТ	Giuseppe Zibordi	North Adriatic Sea	45.314N 12.508E	$\rho_{wh}(\lambda), \rho_{wh}$ is $(\lambda), E_{\epsilon}(\lambda), \tau(\lambda), a, Chl$	1078
Abu Al- <u>Bukhoosh</u>	Giuseppe Zibordi	Arabian Gulf	25.49N 53.14E	$ρ_{\text{work}}(\lambda), \tau(\lambda), a, \text{Chl}$	265
Algarve	John Icely	Sagres, Portugal	36/37N 8W	$\rho_{wh}(\lambda), \rho_{wh}$ is $(\lambda), E_s(\lambda), Chl$	132
BioOptEuroFleets	Giuseppe Zibordi (p _w Jean-Francois Berthon (IOP Elisabetta Canuti (Chl)		42/45N 37/31E	ρων (λ),ρων_ISME (λ)·,Ε. (λ),Chl.IOP.Ka.TSM	33
BOUSSOLE	David Antoine	W. Mediterranean	43.367N 7.9E	$\rho_{wh}(\lambda), \rho_{wh}$ is $(\lambda), E_s(\lambda), Chl_s K_s$	853
Bristol Channel and Irish Sea	David McKee	Bristol Channel (Irish Sea	&51/54N -3/-4E	$\rho_{mk}(\lambda), \rho_{mk_isme}(\lambda), E_{e}(\lambda), Chl.IOP.OSM.MSM$	43
BSHSummerSurvey	L <u>Holger</u> Klein	North sea English Channel	49.0/62.5N -6.0/8.25E	Chl	140
CaliforniaCurrent	Mati Kahru	California	32.2/34.8N 120.3/123.8W	Qww (λ), Qww_ISME (λ)·, Es (λ), KdeKBARePARex	16
CASES	Simon belanger Selima Be Mustapha	Beaufort Sea n	69.52/71.96N 123.22/138.93W	ρων (λ), Chl.IOP. Kd. TSM	70

MERMAID dataset (2/4)

AhmedLong Island

Sam

LISCO

The following table lists the matchup datasets in MERMAID, the location CSA

of the data, the parameters available and the number of matchups						
ChesapeakeBay	Michael Ondrusek	ChesapeakeBay	38.70/39.00N - 76.30/.76.50W	$\rho_{\text{MAL}}(\lambda), \rho_{\text{MALISME}}(\lambda), \varepsilon_{\text{E}}(\lambda)$	16	
CoveSEAPRISM	Greg Schuste Brent <u>Holben</u>		36.90N 75.71W	ρων (λ), Chl.	221	
<u>EastEngChannel</u>	Hubert <u>Loisel</u>	Estern English channel	49.4/51.4N 0.0/3.0E	ρων (λ), Chl	54	
FrenchGuiana	Hubert <u>Loisel</u>	French Guiana	4.7/5.0S 51.9/52.3W	Russ (1), Chl	10	
Gloria	Giuseppe Zibordi	Black Sea	44.60N 29.36E	$ρ_{wN}$ (λ), $τ$ (λ), a , Chl ·	24	
Gustav Dalen Tower	Giuseppe Zibordi	Baltic Sea	58.59N 17.47E	$ρ_{ww}(\lambda), ρ_{ww_isme}(\lambda), E_{e}(\lambda), \tau(\lambda), a, Chl$	446	
Helgoland	Roland Doerffer	North Sea	54N 7.5/8.5E	$\rho_{wN}(\lambda), \rho_{wN_z ISME}(\lambda)^*, E_s(\lambda)$	N/A	
Helsinki Lighthouse	Giuseppe Zibordi	Baltic Sea	59.95N 24.93E	$\rho_{wN}(\lambda), \rho_{wN_ISME}(\lambda), E_{e}(\lambda), \tau(\lambda), a, Chl$	362	
MOBY	Kenneth Voss	Lanai, Hawaii	20.822N, 157.187W	$\rho_{ww}(\lambda), \rho_{ww_{ISME}}(\lambda), E_{s}(\lambda)$	992	

40.95N

 $\rho_{wk}(\lambda), \tau(\lambda), a, Chl$

MERMAID dataset (3/4)

The following table lists the matchup datasets in MERMAID, the location of the data, the parameters available and the number of matchups

ПСО	Vittorio Brando	Lucinda Australia	18.52S 146.38E	$ρ_{wN}(λ), τ(λ), a, Chl$	39
MAREL	Catherine <u>Belir</u>	, French Coast	4 buoys at : 43.32N, 4.85E 40.74N, 1.57E 47.46N, 2.57W 48.36N, 4.55W	<u>Chl</u>	3386
MUMMTriOS	Kevin Ruddick	European Wate	rs27.35N/53.83N -11.98E/12.50E	$\rho_{wN}(\lambda), \rho_{wN_ISME}(\lambda), \mathcal{E}_{s}(\lambda), Chl$	433
MVCO	Hui Een Heidi Sosik	Massachusetts g	41.30N 70.55W	$\rho_{wal}(\lambda), \tau(\lambda), a, Chl$	315
NOMAD	Jeremy Werde See list of P below (**)	PΙ	World wide NOMAD obert Arnone	RWW (N), RWW_ISME (N), Es (N), Chl. IOP. Karkener	PAR 521
		K.	Villiam Balch en Carder ichard Gould arry Harding		
		S	tan Hooker hongping Lee		
			u Morrison ntonio Mannino		
			reg Mitchell rank Muller-Karger		
		D.	orman Nelson avid Siegel		
		Ą	ariusz Stramski jit Subramaniam eremy Werdell	Euro	ppean Space Agency

MERMAID dataset (4/4)

The following table lists the matchup datasets in MERMAID, the location of the data, the parameters available and the number of matchups

Susanne	N.W. Baltic	58N 17E	$R_{MN}(\lambda), R_{MN_{\bullet}ISME}(\lambda), E_{\bullet}(\lambda), Chl$	22
Kratzer				
Susanne Kratzer	Pålgrunden, Sweden	58.75N 13.15E	$\rho_{wil}(\lambda), \tau(\lambda), a, Chl$	179
David Siegel	California	34.9/34.1N 119.1/12.1W	$\rho_{\text{will}}(\lambda), \rho_{\text{will_ISME}}(\lambda), E_{\text{s}}(\lambda), Chl_{\text{s}}IOP$	271
Gavin Tilstone	North sea Western English Channel	47/53N -10/3.4E	Chl.IQP.TSM	56
Vanda <u>Brotas</u>	Portuguese coas	t38.08/40.69N 8.79/10.50W	Chl	198
Catherine <u>Belin</u>	French Coast	41.53/51.10N 9.79/5.10W	ChLTSM	1284
Pierre-Yves Deschamps	World wide	World wide	$\rho_{min}(\lambda), \rho_{min_ISME}(\lambda)^{*}, E_{e}(\lambda)$	510
Annelies Hommersom	<u>Wadden</u> Sea	52-53N 4-6W	ρων (λ),Chl.IOP.TSM	5
Bill Gibsor Alan Weidemann	nGulf of Mexico	28.86N 90.48W	$\rho_{min}(\lambda), \tau(\lambda), a, Chl$	34
	Susanne Kratzer David Siegel Gavin Tilstone Vanda Brotas Catherine Belin Pierre-Yves Deschamps Annelies Hommersom Bill Gibsor Alan	Susanne Kratzer Susanne Sweden Kratzer David Siegel California North sea Western English Channel Vanda Brotas Portuguese coas Catherine Belin French Coast World wide Pierre-Yves Deschamps Wadden Sea Annelies Hommersom Bill GibsonGulf of Mexico Alan	Susanne Kratzer Pålgrunden, 58.75N Susanne Kratzer David Siegel California 34.9/34.1N 119.1/12.1W Gavin Tilstone Western English Channel 47/53N Channel 47/53N -10/3.4E Vanda Brotas Portuguese coast38.08/40.69N 8.79/10.50W Catherine Belin French Coast 41.53/51.10N 9.79/5.10W World wide World wide Pierre-Yves Deschamps Wadden Sea 52-53N Annelies Hommersom Bill GibsonGulf of Mexico 28.86N Alan Pierre-Yves Deschamps Wadden Sea 52-53N 4-6W	Susanne Kratzer. 17E Susanne Susanne Susanne Kratzer Pålgrunden. 58.75N ρων (λ),τ(λ),α,Chl· David Siegel California 34.9/34.1N 119.1/12.1W ρων (λ),ρων τονε (λ)·,Εε (λ).Chl.IOP Gavin Tilstone Western English Channel 47/53N -10/3.4E Chl.IOP.TSM Vanda Brotas Portuguese coast38.08/40.69N 8.79/10.50W Chl. Catherine Belin French Coast 9.79/5.10W 41.53/51.10N 9.79/5.10W Chl.TSM Pierre-Yves Deschamps World wide World wide Pow (λ),ρων τονε (λ)·,Εε (λ) Annelies Hommersom 4-6W Bill GibsonGulf of Mexico Alan 28.86N 90.48W ρων (λ),τ(λ),α,Chl·

In-situ data policy

Primary Users

MERMAID has originally been developed for supporting the MERIS Maintenance & Evolution project. Members of the MERIS Quality Working Group (QWG) have access to the database within the frame of their mandate as defined and approved by ESA. In situ data providers with successful matchups with MERIS data are also granted access to the database.

External Users

Any investigators outside the scope of the MERIS maintenance & evolution project can request access to the database by sending a short description of their project and the intended use of the MERMAID data at mermaid@acri.fr. Access is granted through a Service Level Agreement.

Acknowledgements and Proprietary Rights

When MERMAID extractions are used in publications, the Principal Investigators of in situ data (PIs) should always be contacted for approval, be offered co-authorship and acknowledged. The PIs and contact details are listed in the table below and appear in the MERIS extractions. ACRI-ST and ARGANS should always be acknowledged too, as quality control, post-processing, MERIS processing, extractions, database system and web facility are proprietary and operated on behalf of ESA.

Restrictions

Access is strictly personal through nominative login and password.

MERMAID extractions and data should only be used for the validation purpose defined when access was granted; in particular redistribution of MERMAID extractions directly or through external facilities/database is forbidden.

In-situ data policy: How to protect PI (on top of acknowledgment)? e.g. should we have 1 year or more exclusivity period?