Aerosol Determination

Sean Bailey

NASA Goddard Space Flight Center

06 May 2013

International Ocean Color Science Meeting

Darmstadt, Germany

Scaled Reflectance (ε)

Computation of Aerosol Correction

AERONET Data

- Open Ocean
 No. of Sites: 8
 No. of Daily Obs. 2543
- Chesapeake Bay
 No. of Sites: 3
 No. of Daily Obs. 2193

- Each site had 150 or more daily observations
- Only observations with $T_{\rm aer} \leq 0.3$ were considered

Details of the Ahmad Aerosol Models

- Type of distribution:
- Fine mode:
- Coarse mode:
- Modal radii:
- Std. dev.:
- Refractive Index:
- Absorption:
- No. of RH :
- No. of aerosol models/RH:

Lognormal bimodal

- Similar to coastal region aerosols
- Similar to open ocean aerosols

Vary with RH

Constant with RH

Vary with RH

All absorptions due to fine mode aerosols.

Eight (30, 50, 70, 75, 80, 85, 90 and 95)

els/RH: 10 (constructed by varying fine mode fraction from zero to one)

- Total no. of aerosol models: 80 (8RH x 10 models/RH)

Ahmad Aerosol Models Examples

IOCS - 06 May 2013

• For small T_{865} (< 0.15) SeaWiFS and MODIS values agree very well one another over the entire overlapping time period.

• Since ocean color retrievals are made under low to moderate aerosol loads, SeaWiFS effectively screens out large values of T_{865} . This results in large bias when T_{865} exceeds 0.15

Absorbing Aerosols

- Dust
- Black Carbon
 - incomplete combustion
 - fossil fuels, bio-fuels, biomass
 - emitted in both anthropogenic and naturally occurring soot
- Urban/Industrial Pollution

Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, *J. Atmos. Sci.*, *59*, 590-608.

Dust Spectral Dependence

TOA Reflectance - Aerosol Layer Height

• Note: Based on our latest dust model, the SSA at 412nm is ~ 0.89. For τ_{aer} =0.25, an error of 1 km in aerosol layer height would change the TOA reflectance by ~ 0.7%. This will result in 7% change in water-leaving radiance. The error will increase with an increase in τ_{aer}

TOA Reflectance - Aerosol Layer Height

The effect of assigning wrong SSA to aerosols...even if the aerosol layer-height is exactly known...

TOA reflectance for each aerosol model has been normalized by the TOA reflectance of a **non-absorbing aerosol** model at exactly the same height.

i.e. for an aerosol layer at 3 km, and τ_{aer} =0.25, a change in SSA value from 0.878 to 0.918 would result in a change of ~2% in TOA reflectance. This is equivalent to a change of 20% in water-leaving reflectance

One Small Step...

Some Basic Definitions

Relationship Between Single & Multiple Scattered Reflectances

 In atmospheric correction algorithm the relationship between single and multiple scattered reflectances is defined as:

 $ln(\rho_{\rm ms}) = a_0 + a_1 ln(\rho_{\rm ss}) + a_2[ln(\rho_{\rm ss})]^2$

Computation of $\varepsilon_{ss}(obs.)$ from $\varepsilon_{ms}(obs.)$

• GW94 Algorithm

$$ln(\rho_{\rm ms}) = a_0 + a_1 ln(\rho_{\rm ss}) + a_2 [ln(\rho_{\rm ss})]^2$$

• Using the observed multiple scattered $\rho_{ms}(\lambda_{748}, \lambda_{869})$ values, compute the single scattering $\rho_{ss}(\lambda_{748}, \lambda_{869})$ values for each aerosol model of the selected Rh suite.

- Determine the mean ε_{ss} value.
- Next, throw away the two extreme ϵ_{ss} values and re-compute the mean ϵ_{ss} value
- Continue this process until only four ϵ_{ss} values are left.
- Mean of the four ϵ_{ss} values is then considered as the single scattering ϵ_{ss} value for the observed ϵ_{ms} value.

It's not all Aerosols...

Spectral Transmission

An Example of NO₂ Correction

MODIS RGB Image (April 11 2005)

Before NO₂ Correction

NO₂ (OMI, April 11 2005)

After NO₂ Correction

IOCS - 06 May 2013

The Tall Poles

- Absorbing Aerosols

 Three flavors perhaps no single solution
- Single/Multiple Scattering
- Non-conservative gaseous absorption

Additional Resource Slides

Transport of Mineral Dust

Reproduced from D'Almeida et al (1991)

Aerosol Models

 Gordon-Wang models are based on Shettle-Fenn's models proposed for climate and radiation studies in 70s

• Width of Gordon-Wang models are much broader than AERONET models. For example, Fine mode: 0.806 vs. 0.437; Coarse mode: 0.921 vs. 0.672

IOCS - 06 May 2013

Gordon-Wang Model vs. AERONET

Aerosol Optical Thickness (T_{aer})

Angstrom Coefficient (α)

 <T> retrieved from Gordon-Wang (G-W) models is almost 1.6 time as large as retrieved from AERONET

• < α > (443:865 nm) retrieved from Gordon-Wang (G-W) models is less than half (0.44) as retrieved from AERONET

IOCS - 06 May 2013

Seasonal Characteristics of Aerosol Size Distributions (AERONET)

• Over the Chesapeake Bay region, mean geometric radius of fine and coarse mode aerosols show strong seasonal dependence.

• Over open ocean, fine mode radius show a weak seasonal dependence, whereas, coarse mode radius is practically constant.

•Std. dev. of fine and coarse mode distributions are practically constant throughout the year. ($<\sigma_f >= 0.44$ and $<\sigma_c >= 0.67$)