NASA Science Team Assessment of S-NPP VIIRS Ocean Color Products

Kevin R. Turpie,
Barney Balch, Bruce Bowler, Bryan A. Franz, Robert Frouin, Watson Gregg, Charles R. McClain, Cecile Rousseaux, David Siegel, Menghua Wang

8 May 2013
International Ocean Color Science (IOCS) Meeting
Darmstadt, Germany
QUICK BACKGROUND
TRANSLATING BETWEEN PARADIGMS: NOAA AND NASA DATA PRODUCTS

NOAA Operational Data Products

- Raw Data Record (RDR)
- Sensor Data Record (SDR)
- Environmental Data Records (EDR)

NASA Evaluation Data Products

- Level 0
- Level 1b: Uncorrected Level 1b or “Pseudo” Level 1a
- Level 2
- Level 3
NASA SCIENCE TEAM TASKS

Activities can be separated into three areas:

- **“New” Algorithms** – development of new products or continuity products.
- **Data Collection** – to develop/validate new products and validate EDRs.
- **Product Evaluation** – analysis to answer the following questions:

 Q1: Will the Ocean Color EDR products meet NASA science objectives for data continuity with the SeaWiFS and MODIS Aqua missions?

 Q2: Does the VIIRS measurements provide sufficient quality data to meet said NASA science objectives?
NASA ST Evaluation at GSFC involved two components:

- Evaluation (Re)Processing,
- Independent Calibration.
NASA Evaluation (Re)Processing

ADVANTAGES:

- Production of NASA evaluation products provides an opportunity to look at VIIRS performance using NASA algorithms common to the NASA OC CDR established with SeaWiFS and MODIS.

- The NASA approach records changes in calibration with time so that the data can be easily and consistently reprocessed.

- Evaluation processing provides a longer time series during the early mission, thus accelerating evaluation of VIIRS potential.

- Facilitates the production of new and continuity data products not supported by the operational data processing system.

- Facilitates generation of L3 data products, which is not supported by the operational processing stream.
Environment Data Records (EDR)
- Normalized Water-Leaving Radiance (nL_w)
- Chlorophyll a concentration
- Inherent Optical Properties (IOP):
 - Absorption coeff (a)
 - Backscatter coeff (b_b)

Level-2 (L2)
- Remotes Sensing Reflectance (R_{rs})
- Chlorophyll a concentration
- Photosynthetically Available Radiation (PAR)
- Particulate Inorganic Carbon (PIC)
- Diffuse Attenuation Coeff (K_d)
- Ångstrom
- Aerosol Optical Thickness (AOT)

Level-3 (L3)
- Eq Area Binned Products
- Eq Angle Standard Map Image (SMI)
“NEW” ALGORITHMS
\(K_d(490) \) – MODIS to VIIRS Comparison

VIIRS and MODIS \(K_d(490) \) compare well, but coverage is better for VIIRS.
PAR Monthly Avg Comparison Between VIIRS and MODIS
VIIRS PAR compares very well with *in situ* data.

<table>
<thead>
<tr>
<th>r^2</th>
<th>Bias ($E/m^2/d$)</th>
<th>RMS ($E/m^2/d$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.910</td>
<td>1.93 (5.6%)</td>
<td>5.81 (16.8%)</td>
</tr>
<tr>
<td>0.949</td>
<td>1.43 (4.2%)</td>
<td>4.05 (11.8%)</td>
</tr>
<tr>
<td>0.990</td>
<td>1.46 (4.5%)</td>
<td>2.32 (7.2%)</td>
</tr>
</tbody>
</table>
PIC – MODIS to VIIRS Comparison

VIIRS and MODIS PIC compare well.
PAR Satellite to *In Situ* Comparison for VIIRS and MODIS

VIIRS and MODIS show comparable performance.
Application of the SWIR Band for Atmospheric Correction

- (a-d) Daily L3 VIIRS products using with SWIR band.
- This are close to MODIS values (not shown).
Assimilation Methods – Annual Median Chlorophyll and Difference.
GSFC PRODUCT EVALUATION
Calibration Assessment
Independent Calibration

ADVANTAGES:

- Facilitates evaluation (re)processing.

- Independent verification of operational calibration.

- Can apply lessons learned from heritage instruments.

- Provided flexible and direct access to calibration data for product evaluation.
NASA VIIRS SOLAR CALIBRATION
with Verification of Lunar Measurements

Stabilized Calibration Data

Relative Response

551 nm
670 nm
750 nm
865 nm

0.70
0.80
0.90
1.00

Days since 1 Jan 2012

Solar Trend

- Normalized Lunar Cals
NASA VIIRS SOLAR CALIBRATION with Verification of Lunar Measurements

Days since 1 Jan 2012

Relative Response

- Stabilized Calibration Data
- Solar Trend
- Normalized Lunar Cals

412 nm
443 nm
488 nm
551 nm
EVALUATION OF OPERATIONAL CALIBRATION
COMPARISON TO OPERATIONAL SOLAR TRENDING FOR 2012

Operational SD trending for the IDPS processing has been highly variable over the first part of 2012.

NASA Eval Trend (colored)
NOAA Oper Trend (black)
GSFC PRODUCT EVALUATION
Product Assessment
EDR	EVL
410nm | 551nm
443nm | 671nm
486nm | 671nm

One-to-one Line
SMA Regression Line
Eval and EDR Rrs Regression Stats

NASA Evaluation Data Products (L2) Match-Up Analysis (R2013.0)

<table>
<thead>
<tr>
<th>Rrs(l) nm</th>
<th>Slope</th>
<th>Std Err</th>
<th>Lower Bnd</th>
<th>Upper Bnd</th>
<th>Intercept</th>
<th>Std Err</th>
<th>Lower Bnd</th>
<th>Upper Bnd</th>
<th>No.</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>1.19</td>
<td>1.78E-02</td>
<td>1.16E+00</td>
<td>1.23E+00</td>
<td>-7.6E-04</td>
<td>8.00E-05</td>
<td>-9.10E-04</td>
<td>-6.10E-04</td>
<td>1399</td>
<td>0.69</td>
</tr>
<tr>
<td>443</td>
<td>1.10</td>
<td>1.18E-02</td>
<td>1.08E+00</td>
<td>1.12E+00</td>
<td>-5.7E-04</td>
<td>6.00E-05</td>
<td>-6.90E-04</td>
<td>-4.50E-04</td>
<td>1188</td>
<td>0.86</td>
</tr>
<tr>
<td>486</td>
<td>0.95</td>
<td>6.43E-03</td>
<td>9.39E-01</td>
<td>9.64E-01</td>
<td>-5.3E-04</td>
<td>5.00E-05</td>
<td>-6.20E-04</td>
<td>-4.40E-04</td>
<td>1399</td>
<td>0.94</td>
</tr>
<tr>
<td>551</td>
<td>0.97</td>
<td>6.60E-03</td>
<td>9.59E-01</td>
<td>9.84E-01</td>
<td>-7.1E-04</td>
<td>5.00E-05</td>
<td>-8.00E-04</td>
<td>-6.10E-04</td>
<td>1389</td>
<td>0.94</td>
</tr>
<tr>
<td>671</td>
<td>1.09</td>
<td>1.32E-02</td>
<td>1.07E+00</td>
<td>1.12E+00</td>
<td>-4.9E-04</td>
<td>2.00E-05</td>
<td>-5.30E-04</td>
<td>-4.40E-04</td>
<td>1249</td>
<td>0.82</td>
</tr>
</tbody>
</table>

NOAA Environmental Data Records (EDR) Match-Up Analysis

<table>
<thead>
<tr>
<th>Rrs(l) nm</th>
<th>Slope</th>
<th>Std Err</th>
<th>Lower Bnd</th>
<th>Upper Bnd</th>
<th>Intercept</th>
<th>Std Err</th>
<th>Lower Bnd</th>
<th>Upper Bnd</th>
<th>No.</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>1.02</td>
<td>1.65E-02</td>
<td>9.88E-01</td>
<td>1.05E+00</td>
<td>-9.2E-04</td>
<td>9.00E-05</td>
<td>-1.09E-03</td>
<td>-7.50E-04</td>
<td>1006</td>
<td>0.74</td>
</tr>
<tr>
<td>443</td>
<td>1.04</td>
<td>1.42E-02</td>
<td>1.02E+00</td>
<td>1.07E+00</td>
<td>-9.0E-04</td>
<td>8.00E-05</td>
<td>-1.07E-03</td>
<td>-7.40E-04</td>
<td>840</td>
<td>0.85</td>
</tr>
<tr>
<td>486</td>
<td>0.96</td>
<td>8.20E-03</td>
<td>9.47E-01</td>
<td>9.80E-01</td>
<td>-6.2E-04</td>
<td>7.00E-05</td>
<td>-7.50E-04</td>
<td>-4.90E-04</td>
<td>963</td>
<td>0.93</td>
</tr>
<tr>
<td>551</td>
<td>1.06</td>
<td>8.86E-03</td>
<td>1.04E+00</td>
<td>1.08E+00</td>
<td>-4.8E-04</td>
<td>7.00E-05</td>
<td>-6.20E-04</td>
<td>-3.50E-04</td>
<td>957</td>
<td>0.93</td>
</tr>
<tr>
<td>671</td>
<td>1.04</td>
<td>1.44E-02</td>
<td>1.01E+00</td>
<td>1.07E+00</td>
<td>-4.6E-04</td>
<td>3.00E-05</td>
<td>-5.20E-04</td>
<td>-4.10E-04</td>
<td>881</td>
<td>0.83</td>
</tr>
</tbody>
</table>

The R2013.0 Evaluation Products appear to perform a little worse than the EDR in the blue and red bands.
Common Bin Comparison for 2012

8-Day Composite Deep-Water Chl α Concentration Mean

- NOAA EDR
- NASA Eval
- MODIS Aqua

Mean Chl (mg m$^{-3}$)

Time:
- Feb
- Mar
- Apr
- May
- Jun
- Jul
- Aug
- Sep
- Oct
- Nov
- Dec
- Jan
Comparison of the EDR and NASA Evaluation Product Against the Long-Term Record

Deep Water Monthly Composite Average for Chlorophyll \(a\) Concentration

B. Franz 2013
VIIRS Product Evaluation

CONCLUSIONS

- VIIRS evaluation production supports the development of new or continuity algorithms.

- Analysis showed that the EDR product flags and masks reduced data coverage, undermining the product’s usefulness, but are being improved.

- *In situ* match-ups show that both operational and evaluation radiometric products are in general agreement with the AERONET-OC data.

- Up to present, NOAA EDR chlorophyll *a* concentration deep water average time series runs much higher than the long-term NASA record and NASA evaluation product.

- Currently, EDR chlorophyll *a* concentration will likely be improved with the application of vicarious calibration, but the previous record will remain reprocessed.
VIIRS Product Evaluation

CONCLUSIONS

- A significant portion of the NOAA ocean color record remains insufficient to meet NASA’s research objectives. *(Q1)*

- Conversely, NASA record agrees with MODIS Aqua remarkably well, thus VIIRS has potential for NASA data continuity. *(Q2)*
Danke Schön
BACKUP SLIDES
Ocean Color Team Members

David Siegel
Data Collection – Plumes & Blooms
(New Algorithm – GSM)

Robert Frouin
Data Collection – SIMBADA
New Algorithm – Photosynthetically Available Radiation (PAR)

Barney Balch
Data Collection – AMT, GBII, Gulf or Maine
New Algorithm – Particulate Inorganic Carbon (PIC)

Watson Gregg
New Algorithm – Consistent Global Maps of Chlorophyll using Data Assimilation

Menghua Wang
Evaluation of VIIRS Ocean Data – NOAA Operational EDR

Kevin Turpie

Peter Minnett
Evaluation of VIIRS SST Data
“New” Algorithms

Balch – Development of the Particulate Inorganic Carbon (PIC) algorithm* for VIIRS.

Frouin – Development of the Photosynthetically Available Radiation (PAR) algorithm* for VIIRS.

Gregg – Development of techniques using oceanic modeling and data assimilation to improve the mapped record of chlorophyll a concentration.

Siegel – Development and evaluation of the GSM analytic model for in-water optical constituents. This is an experimental SeaWiFS and MODIS product.

* - Standard products with SeaWiFS and MODIS.
Data Collection

Balch – Collected data from the Atlantic and southern oceans for evaluation of VIIRS data products and to support development of the PIC algorithm.

Frouin – Collected radiometric data with his SIMBADA instrument for evaluation of VIIRS and to support development of this PAR algorithm.

Siegel – Collected data from coastal waters for evaluation of VIIRS in coastal and to support analysis with the GSM model.

All data are being archived in the SeaWiFS Bio-optical Archive and Storage System (SeaBASS).

Validation is also using several hundred radiometric data points from the AErosol RObotic NETwork - Ocean Color (AERONET)
TWO PRONGED APPROACH:

NASA - To determine whether NOAA EDR = NASA CDR, and evaluate VIIRS potential to meet NASA science requirements, the GSFC team created NASA evaluation products using:

- **Evaluation (Re)Processing** – the NASA-selected algorithms used in generating current NASA CDR with full reprocessing capability.

- **Independent Calibration** – based on NASA-developed techniques combining lunar and solar trending.

NOAA – To generally evaluate operational NOAA EDR quality, Menghua Wang performed independent processing using his software (NOAA-msI12) and collaborated with the Navy Research Laboratory, who produced products with their software (NRL-APS, which based on NASA software).

In both cases, VIIRS results were compared to *in situ* data and other spaceborne sensors.
Background

DEFINITIONS AND TEAM OBJECTIVE

Climate Data Record (CDR) – “a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change.¹”

Earth System Data Record (ESDR) – “a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements in addressing science questions....²”

ESDR and CDR – “Long-term, high-accuracy, stable, environmental observations...³”

- Decadal Span
- High Accuracy
- Stability
- Consistency
- Continuity

Objective – Evaluate operational NOAA Environmental Data Products (EDR) “to demonstrate the suitability of these data sets for use as ESDRs and CDRs³” and “...evaluate the accuracy with which the operational algorithms ... can extend the time series of science-quality data records begun with NASA’s EOS and earlier satellite systems.³”

³-ROSES10 Announcement, Appendix A.22, Section 1.1.
Background

NINE KEY OCEAN COLOR CDR MISSION COMPONENTS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **2. Computational and Data Infrastructure** | • (Re)Processing,
• Storage, and
• Distribution |
<p>| 3. Algorithms | Accurate, community-accepted calculations for atmospheric correction, derived products, and mapping (e.g., Level-3 products). |
| 4. Calibration | Postlaunch instrument recalibration for changes and on-orbit artifacts. |
| 5. Maneuvers | Roll (lunar cal); Yaw maneuver (solar calibrator); Pitch (thermal RVS) |
| 6. Reprocessing | Apply algorithms and calibration consistently over multiple missions. |
| 7. Validation | Assess product quality based on in situ data, comparisons to existing space or airborne assets, and artifact monitoring. |
| 8. In situ Data Collection | To support data product quality assessment and develop remote sensing models. |
| 9. User Tools and Input | Important to supply the community with common tools to apply the data; vital to facilitate and respond to input from the community regarding data quality. |</p>
<table>
<thead>
<tr>
<th>TEAM</th>
<th>INVESTIGATION</th>
<th>OCEAN PEATE PRODUCTS</th>
<th>OPERATIONAL SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balch (PI) Bowler</td>
<td>New Algorithm</td>
<td>L2 Evaluation $R_{rs}(l)$ (algorithm input)</td>
<td>Algorithm Implementation: Particulate Inorganic C (PIC) Particulate Organic C (POC)</td>
</tr>
<tr>
<td></td>
<td>Data Collection</td>
<td></td>
<td>New Product Generation: L2 & L3 Evaluation PIC & POC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Available Services: SeaBASS Archival Support</td>
</tr>
<tr>
<td>Frouin (PI) Deschamps</td>
<td>New Algorithm</td>
<td>L2 Evaluation $R_{rs}(l)$ (algorithm input)</td>
<td>Algorithm Implementation: Photosynthetically Available Radiation (PAR)</td>
</tr>
<tr>
<td></td>
<td>Data Collection</td>
<td></td>
<td>New Product Generation: L2 Evaluation PAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Available Services: SeaBASS Archival Support</td>
</tr>
<tr>
<td>Gregg (PI) Casey</td>
<td>New Algorithm</td>
<td>L3 Evaluation Chl a L3 Operational Chl a</td>
<td>Available Services: SeaBASS Archive Retrievals and Match-up</td>
</tr>
<tr>
<td>Rousseaux</td>
<td>Data Collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnett (PI) Evans</td>
<td>SST Evaluation</td>
<td>L1 Evaluation (Thermal Bands)</td>
<td>Available Services: Match-up Support</td>
</tr>
<tr>
<td>Turpie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siegel (PI) Nelson</td>
<td>New Algorithm</td>
<td>L2 Evaluation $R_{rs}(l)$</td>
<td>Available Services: SeaBASS Archival Support</td>
</tr>
<tr>
<td></td>
<td>Data Collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turpie (Sci PI)</td>
<td>OC Evaluation</td>
<td>L2 & L3 Evaluation $R_{rs}(l)$, Chl a, Angstrom, AOT</td>
<td>Available Services: Independent Solar and Lunar Calibration Support Regional Time Series Tool Scan Angle Artifact Detection Tool SeaBASS Match-up Tool</td>
</tr>
<tr>
<td>McClain (PI) Franz</td>
<td></td>
<td>L2 & L3 Operational nLw(l), Chl a</td>
<td></td>
</tr>
<tr>
<td>Wang</td>
<td>OC Evaluation</td>
<td>L3 MODIS Products</td>
<td>none</td>
</tr>
</tbody>
</table>

OCEAN PEATE SCIENCE TEAM SUPPORT
PAR Daily Comparison Between VIIRS and MODIS
PAR 8-Day Avg Comparison
Independent Calibration

COLLABORATIVE EFFORT:

- The off-line calibration processing and analysis was developed by Gene Eplee of the OBPG.

- Additional system development and analysis provided by Wayne Robinson and Gwyn Fireman (OBPG).

- Shared and discussed findings with the NASA VIIRS Calibration Support Team’s (VCST).

- Collaborated with NASA Science Team member, Tom Stone (USGS), for application of the ROLO model for lunar trending.

- Bob Barnes and Fred Patt (OBPG) worked with VCST and Mission Ops to plan calibration roll maneuver.

- Applied NASA VCST’s transmission and BRDF tables based on yaw maneuvers.

- Shared results at scientific conferences and technical papers.
Independent Calibration

APPROACH:

- Linearize prelaunch counts-to-radiance conversion.

- Track and trend instrument relative response change with respect to VIIRS measurements of
 - the on-board solar diffuser (SD) and
 - the moon (facilitated by roll maneuvers and ROLO model).

- Track and correct for changes in SD by trending measurements by the SD Stability Monitor (SDSM).

- SD trending addresses relative changes in instrument response. Vicarious calibration is used to remove static calibration biases.

- Use lunar trends to identify and possibly correct artifacts in the solar trends.

- Use on-board solar diffuser (SD) to determine and remove gross detector-to-detector and mirror-side differences.
Using the SD over the mission, we identify and remove 1st order striping effects.

These effects are likely embedded in the prelaunch characterization of the counts-to-radiance conversion.

They appear to be stable over the year.
DETECTOR-TO-DETECTOR RESPONSE VARIATION

Band M4 Detector Response

Band M5 Detector Response

Band M6 Detector Response

Band M7 Detector Response
SD MIRROR-SIDE CORRECTION
Using the SD over the mission, mirror-side effects are identified and removed.

These effects are also likely embedded in the prelaunch characterization of the counts-to-radiance conversion and also appear to be stable over the year.

Response behavior across bands between mirror sides is complementary.
- In L2 to L3 comparison, less than 10% variation in the evaluation normalized water-leaving radiance (nLw) can be seen along scan, the 551nm band being most notable.
- Along track, significant residual striping can still be seen in nLw, esp. edge dets.
- Comparable nLw striping has been observed in the EDR.
• Similar analysis for MODIS show much smaller effects, esp for striping.
CONCLUSIONS:

- Comparisons between the operational IDPS calibration and the independent calibration show the former was not stable this year.

- However, a consistent calibration can be achieved with VIIRS, but it may take years to reach heritage quality.

- Corrections for residual striping and scan effects should be applied.

- Improvements in the operational calibration stability are expected.

- However, the operational algorithm change process is necessarily dilatory.

- Therefore, given the lack of a reprocessing capability, delays can cause lengthy, permanent epochs in the data record.
VIIRS Product Evaluation

COMPARISON TO IN SITU DATA

- Several hundred match-ups were found between VIIRS satellite data and AERONET-OC data with a 3-hr window. No other in situ sources were found.

- AERONET-OC sites are mostly northern hemisphere coastal.

- Data includes only remote sensing reflectance (R_{rs}). No chlorophyll a concentration match-ups were found.

- Match ups with MOBY were excluded because that source was used in the vicarious calibration.

- SeaBASS currently can match up the VIIRS Evaluation Products only. Match ups with EDR data must be done by hand.
VIIRS Product Evaluation

Locations of AERONET-OC site used in match-up analysis.
VIIRS Product Evaluation

FLAG AND MASK EVALUATION:

- Bad flagging undermines filtering data for analysis or validation.
- Bad masking removes data and they cannot be recovered.

Masking issues:
- All inland waters are masked (e.g., Great Lakes),
- Pixels are masked whenever any single band has negative normalize water-leaving radiance, losing gyre data, and
- EDR pixels within 650 km of scan end.

- Masks and flags significantly and systematically reduce spatial coverage and the number of observations within each L3 bin.
- Reduction in spatial sampling can introduce significant noise into the EDR L3 statistics.
- Generally, EDR flags and masks showed poor performance, but improvements later in the year have been observed.
Global Sample Size after Filtering

L3 eq area bins common to NOAA EDR and NASA evaluation products

- **NASA VIIRS L3b**
- **EDR L3b**

Total Number of Observations (Millions)

Time

- **NASA Eval**
- **NOAA EDR**
VIIRS Product Evaluation

COMPARISONS TO MODIS Aqua

- NASA evaluation and NOAA EDR chlorophyll \(\alpha \) concentration time series for global deep waters was compared to data from MODIS Aqua.

- Maps were created showing the relative differences between:
 - NASA evaluation chlorophyll \(\alpha \) concentration and MODIS Aqua data,
 - NOAA EDR chlorophyll \(\alpha \) concentration and MODIS Aqua data.

- L2 imagery for chlorophyll \(\alpha \) concentration were compared between NASA evaluation chlorophyll \(\alpha \) concentration and NOAA EDR chlorophyll \(\alpha \) concentration.
Relative Difference Map

NASA Eval VIIRS – MODIS Aqua

8-Day composite – 24-31 May 2012

Relative Difference in SMI Chl (%)
Relative Difference Map

NOAA EDR – MODIS Aqua

8-Day composite – 24-31 May 2012

Relative Difference in SMI Chl (%)
S. Atlantic
Off of the Namibian coast

Chl a (mg m^-3)

V2012147263621.L2_NPP_OC

26 May 2012

NASA L2

S. Atlantic
Off of the Namibian coast
Chl a (mg m$^{-3}$)

S. Atlantic
Off of the Namibian coast
EDR Vicarious Calibration

- Vicarious calibration coefficients are expected to be inserted into the operational processing stream shortly.
- Brings the chlorophyll product back in family with MODIS.
- The plot above was produced outside of the operational processing.
- The distributed NOAA product has not been reprocessed.