

Some specificities in GEO OCR processing

Constant Mazeran, ACRI-ST

Splinter Session 3 – Geostationary ocean colour radiometry International Ocean Couleur Science Meeting 6th May 2013, Darmstadt

Outline

Geostationnary orbit brings us back down to Earth...

- 1. Clouds are moving \rightarrow coverage performance; quantity of data
- 2. The Sun is behind us \rightarrow sun glint pattern; backscattering geometry
- 3. The Earth is round
- \rightarrow air mass issue; RTM, atmospheric correction
- 4. 36 000 km is very high \rightarrow MTF issue

Focus on an mission with a large field of view (« OCAPI », « GEO-Oculus » , GOCI-2...) – issues not totally relevant in the GOCI observation

GOCI FOV as if over Europe

1. Coverage performance, acquisition and data

EUMETSAT Cloud Mask Product 21/06/2007 09:00:00 GMT

Mean synthetic OC availability from LEO - May 2007

Coverage simulations, including constraints on cloud coverage, air mass, glint – see hereafter

70

60

Mean synthetic OC availability from LEO+GEO - May 2007

1. Coverage performance, acquisition and data

Huge amount of data

• Estimated size (OCAPI concept, 1 hour revisit) :

Level	Image (Mbytes)	Daily (Gbytes)
raw data	275	215
0	275	215
1b	316	245
2	458	358
Total	1324	1033

- \star \rightarrow same order of magnitude than OLCI (global)
- Need for a daily L3 binned products

Try to optime acquisition scenario to minimise the data size?

- Acquisition: step and stare approach, by slots
- Dynamic pointing with respect to cloud?

2. Sun glint pattern

Glint avoided most of the place and most of the time \rightarrow low priority on this problem *

ACRI-ST | Constant Mazeran | IOCS Meeting | 06.05.2013 | Slide 5

3. Backscattering geometry

Backscattering geometry most of the day

ACRI-ST | Constant Mazeran | IOCS Meeting | 06.05.2013 | Slide 6

3. Backscattering geometry

- Is aerosol detection more difficult in backscattering geometry?
- **Atmospheric correction traditionnaly detects aerosol in the NIR with:**
 - Two unknowns: aerosol optical thickness and aerosol model
 - * Two bands. Example of the MERIS AC: ρ_{path}/ρ_R (778) and ρ_{path}/ρ_R (865)

3. Backscattering geometry

Is aerosol detection more difficult in backscattering geometry?

Atmospheric correction traditionnaly detects aerosol in the NIR with:

- Two unknowns: aerosol optical thickness and aerosol model
- Two bands. Example of the MERIS AC: ρ_{path}/ρ_R (778) and ρ_{path}/ρ_R (865)

4. Air mass, Earth curvature

***** High viewing angle for many regions of interest

4. Air mass, Earth curvature

It results into a high total air mass fraction...

Atmospheric correction performance wrt airmass

- Mainly inspected for high Solar angle in LEO geometry
- Ding & Gordon 94', Wang 03', Wang (IOCCG study)
- ♦ Performance out of spec for air mass above ≈ 4
- Need for RTC in spherical geometry (at least Rayleigh) for θv greater than ≈ 70°

On-going studies with ESA (resp. Marc Bouvet)

4. Air mass, Earth curvature

4. Air mass, Earth curvature

Assumption of horizontal homogeneity (plane-parallel) to be reviewed?

***** Modulation Transfer Function: gives scale of details reachable by the sensor

- Point spread function \rightarrow Fourier Transform \rightarrow Value at Nyquist frequency (~ $\frac{1}{2} \frac{1}{GSD}$)
- Important to detect fronts, structures...

Total MTF is the combination of optical + mechanical MTF

Critical on GEO plateform because of pointing stability

Goal: 0.3

- Were does this specification come from?
- Space manufacturers: today not reachable on a GEO plateform at 250m resolution
- GOCI (500m) on-orbit MTF estimate (Oh et al 2012): ~0.32

MTF is a compromise with the ground resolution and the signal to noise ratio

If an algorithm (e.g. atmospheric correction) is less sensitive to noise, SNR can be relaxed and MTF improved

Summary of GEO issues

- Large amounts of data (~ OLCI but for a GEO disk)
- Reconsider the historical atmospheric correction scheme:
 - Possible issue in backscattering geometry
 - Possible issue for high air mass
 - Ideally need RTC in spherical shell geometry
 - * Atmosphere modelling (horizontal homogeneity) possibly to be reviewed
- MTF to be justified; or SNR requirement relaxed with more robust algorithms?
- ♦ Other issues: BRDF, adjacency effects...

