OCEANSAT-2 Ocean Colour Monitor (OCM-2)

Pre-launch calibration & Post-launch performance

presented by

Samir Pal

Space Applications Centre Indian Space Research Organisation Ahmedabad – India

email: samirpal@sac.isro.gov.in

R

S

Т

<u>Oceansat-2</u>

aunched	: 23 Sept 2009
rbit	: 720 Km
clination	: 98.28 deg
evisit cycle	: 2-days
wath/Resolution	: 1420 Km/
	360 m X 236m
ime of Pass	: 12 noon
long track Steering	: + 20 deg

Instruments on Oceansat-2

- OCM-2: Ocean Colour Monitor
- OSCAT: Ku-band Scatterometer
- ROSA: ASI's Radio Occultation Sounder for Atmosphere

(OCM-2 Optics side)

(detector head side)

OCM-2 Design

(8 VNIR spectral bands)

- 8-element telecentric lens assembly per band
- f-length: 20 mm ; f/no. = 4.3
- FOV: ± 43 deg
- 2-element bandpass filter + 1 thermal filter
- 3730 of 6k element linear array CCD device
- 12 bit quantisation
- Exposure (gains) : 16 levels
- SNR > 512 at saturation (land reflectance)
- Band-to-band registration : ± 0.25 pixel
- MTF > 0.26
- 4 LED's as onboard cal source per band

OCM-2 Data Products

LEVEL-1 Product: Basic Data Products

- L1A RAW Products
- L1B Radiance Product
- L1C Radiometrically and Geometrically corrected

LEVEL-2 Product: Geo-Physical Parameters

- Chlorophyll-a concentration
- Total Suspended Matter (TSM)
- Diffused Attenuation Coefficients (Kg-490 nm)
- Aerosol Optical Depth (AOD) at 865 nm

LEVEL-3 Product: Binned Products (4 km)

- -Weekly
- Monthly
- -Yearly

LAC Coverage 360 m Spatial Resolution Real time transmission

GAC Coverage 1 Km/ 4 Km Spatial resolution Onboard recording and Playback

Sensor Characterisation

- Pre-launch Spatial & Radiometric
- Onboard calibration using LEDs
- Vicarious calibration using Ocean Buoy
- Lunar Calibration
- Spatial & Radiometric Image based characterization

System Performance

- A) Geometric/ Spatial Parameters
 - MTF / SWR
 - Band-to-Band Registration
 - Payload cube alignment
 - IGFOV as a fn of look angle

A) Radiometric Parameters

- Relative Spectral Response
- Saturation Radiance
- Signal-to-Noise Ratio
- Temperature Response at 5 deg to 25 deg C

Pre-launch Performance (Radiometric / Spatial)

<u>Uncertainty in radiometric calibration:</u>

- Veiling Glare of Lens Assembly : < 1.6 %
- Polarization of lens assembly: < 2.3 %
- Absolute calibration of standard source < 2.4 %
 @ 655 nm
- Transfer radiometer uncertainty < 2.0 %
- Non uniformity of integrating sphere < 4.0 %

Overall Absolute Radiometric Uncertainty(1o) < 6 %

Instrument Spectral Bands	Wavelength Range (nm)	SNR @ Ref Radiance	Nominal reference radiance of Sea (mW/cm²/sr/µm	Saturation radiance (mW/cm²/sr/µm)
C1	402-422	356	9.1	70.2
C2	433-453	386	8.4	36.5
C3	480-500	380	6.6	29.6
C4	500-520	324	5.6	25.8
C5	545-565	311	4.6	21.2
C6	610-630	240	2.5	16.0
C7	725-755	286	1.6	1.9
C8	845-885	141	1.1	14.3

MTF Performance @ nadir (360m X 360 m)

Lens MTF	0.55
Device MTF	
Along Track	0.75
Across track	0.57
Due to alignment & Envir.	0.84
System MTF	
Along Track	0.34
Across Track	0.26

Mis-registration (Band-to-Band) in pixe

•	BBR @ Ambient	± 0.16
	Format matching (+test set up)Distortion	± 0.15 ± 0.05
•	BBR Stability (environment) rss	± 0.16
	 Collinearity Format Change Structural stability Distortion change due to environment 	± 0.10 ± 0.10 ± 0.05 ± 0.05

Overall mis-registration (band-to-band) ± 0.23

OCM-2 System Noise performance

OCM-2 Noise Equivalent Spectral Radiance (*mW/cm²/sr/µ*)

Band	Ocean Ref Rad.	NE∆L _{noise}	SNR (noise)	NE∆L _{norm}	NE∆L _{quant}	NE∆L _{prod}	SNR (prod)
C1	9.1	0.033	274	0.013	0.005	0.036	254
C2	8.4	0.025	334	0.027	0.003	0.037	228
C3	6.6	0.017	397	0.015	0.002	0.023	290
C4	5.6	0.015	379	0.016	0.002	0.022	254
C5	4.6	0.013	357	0.014	0.002	0.019	239
B6	2.5	0.007	357	0.006	0.001	0.009	270
B7	1.6	0.005	345	0.005	0.001	0.007	224
B8	1.1	0.004	256	0.007	0.001	0.008	135

Transfer of radiance scale (Vis-NIR-SWIR)

(from Reference source to the sensor under test)

VNIR Radiometer Head – UDT Inc. make

Laboratory Radiometer & NMI Traceable Reference Sources

12" Integrating Sphere Labsphere Inc. USA

6" Integrating Sphere Calibrated at FASCAL Facility NIST

FEL lamp + diffuser (EG&G Gamma Scientific, USA)

Post-launch Performance

In-flight Calibration :

- Monitors system degradation; optics not covered
- Four LEDs in each band mounted at 71 deg to detector array plane
- Generates 16 intensity levels through exposure control mechanism of CCD
- 128 lines used to compute statistical parameter of individual pixel on the detector

18-12-2009

01-03-2010

▲ 20-05-2010

×28-10-2010

× 20-03-2011

07-06-2011

+ 17-01-2012

-08-10-2012

- 17-04-2013

Criteria applied for detector flagging is based in Chi-squared fit statistics

L/L max

REF # 52 DN

OCM2 Band wise array mean wrt Ref Orbit 52 (Exp-16)

% Variation after Day # 1300 of launch to first day ref. data

	%
Band No	Variation
B1	- 0.3
B2	- 0.7
B3	- 0.2
B4	- 0.6
B5	- 0.6
B6	2.3
B7	0.4
B8	- 2.3

OCM-2 detector Temp varying through diff orbit

- Shows diurnal variation in CCD temperature
- Last data on 17-April-2013

Data Quality Evaluation

Geometric & Radiometric Performance: (monitored on regular basis)

- <u>Geometric parameters</u> (specs)
 - a) Location accuracy (< <u>+</u> 3.8 km)
 - b) Scale variation (< 0.05 %)
 - c) Internal Distortion (< <u>+</u> 3 pixel)
 - d) Residual attitude bias
 - e) Band-to-band Registration (BBR)
 - i) Rad product (<u>+</u>0.5 pixel)
 - ii) Geometric product (+ 0.25 pixel)

- Radiometric parameters
- a) Scene Dynamic Range
- b) Signal-to-Noise Ratio
- c) Relative band behaviour
- d) Inter-sensor comparison
 - i) OCM-2 with OCM-1
 - ii) OCM-2 with Aqua MODIS

<u>Results</u>

Location accuracy for L1C product:	Within 2-3 pix
Internal Distortion:	Within 1.5 pix
Side lap (gives info on orbit drift):	9 % to 17.3 %

Within 2-3 pixels Within 1.5 pixel 9 % to 17.3 % (for 90 % of products) (2009- 2011)

- Algorithms for band-to-band registration (a) Sequential Similarity Detection (b) Mean bias correlation
- BBR quantifies per pixel classification based on along and across track computation
- Features like desert, barren land, lake water used to check linearity, dynamic range, SNR
- Along the pixel array direction BBR is within specs L1C ±0.5 pixel; along track it is about 0.8 pixel

Platform is stable and Products are found to meet specs

Lunar Observation

ISRO

Vicarious calibration results of OCM2

CALTAL

Data dissemination and web portal

			Hart Contraction	इसरो जिल्ल
Home Abo	ut Us Site L	List Tools & Informat	ion FAQs	Contact Us
Login Welcome! Please Login or Register. Username Password Login New User Forgot Password? Feedback Name Email Message Submit Suggested links MOSDAC Hits - 4157	Calibu ISRO has taken multi pron changes. This activity requi A high-tech site is devel measuring various parar Agencies also collect data Kolkata, Gadanki and so o ISRO Science Missions. This web site facilitates the scientific interpretation and OCEANSAT2 INS OCEANSAT2 INS	ration & Validation I nged initiatives for understanding k lires validation for all the products ge eloped at Kavaratti with sensors meters. Similarly, Principal Inves a at field level. Other sites and sub s on for collecting in-situ data and supp e archival, visualisation and dissem d analysis of data from these and fut SAT-3D MEGHA TROPIQUES AT-II is India's second satellite lau is well as the interaction of ocean climatic studies. It carries two major and ROSA (GPS receiver).	Program ey issues concerning global enerated thereby. installed in the ocean for tigators and Collaborating sites are being developed at borting CALVAL activity for all ination of the in-situ data for ure missions. SARAL/ALTIKA nched for the study of the hs and the atmosphere to payloads viz. Scatterometer	SensorsImage: Sensors </th

Lessons Learnt

- Interoperability of Ocean Colour sensors is a necessity
- Validation of pre- and post-launch calibration
- Contingency plan to guard against test instrument failure
- Follow set processes and guidelines in laboratory practices
- <u>Detector based</u> traceability chain to be implemented
- Image evaluation as part of pre-launch calibration prior to launch
- Specify 'quality' indicators

Contributions from

National Remote Sensing Centre - Hyderabad

- A Senthilkumar Time Series data with onboard LEDs
- B Santhisree

Space Applications Centre - Ahmedabad

•	B Kartikeyan Yogdeep Desai Bankim Shah	In-orbit Spatial & Radiometric charact. & Lunar Cal (used ROLO model)
•	A K Shukla K N Babu	CalVal (Ocean buoy – Kavaratty Islands)
•	Nitant Dubey	Data Products software & Lunar observation
•	Prakash Chauhan	Estimate of ocean parameters & Intercomparison OCM-2 with Aqua MODIS