Geostationary Coastal & Air Pollution Events

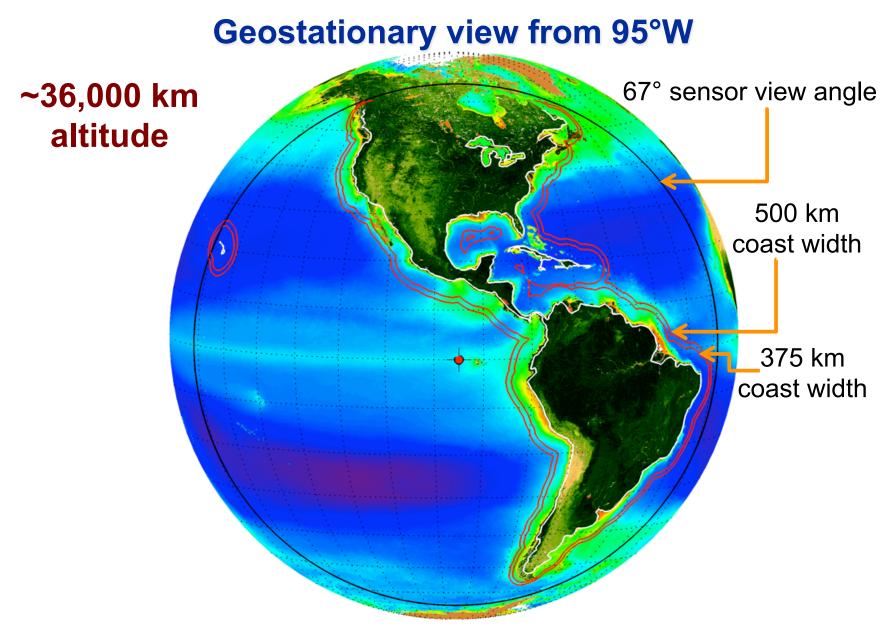
GEO-CAPE Mission status

Antonio Mannino NASA Goddard Space Flight Center Maryland - USA

Acknowledgments GEO-CAPE Oceans SWG Z. Ahmad & D. Aurin

IOCS - May 6-8, 2013

Background


 Mission provides high temporal, spatial, and spectral resolution observations that will resolve the diurnal evolution of North and South American

- Coastal ocean ecology, biogeochemistry, water quality, event scale and sub-mesoscale biological/biogeochemical processes.
- atmospheric composition (descoped to only North America)
- Multiple Instruments (TBD) selection by open competition
 - UV-VIS-NIR hyperspectral sensor plus SWIR bands with high spatial resolution (250 to 375 m) for Ocean Color
 - UV-VIS hyperspectral sensor with coarser resolution (2 to 7 km) for atmospheric trace gas composition and aerosols
 - IR gas correlation sensor (for CO) or Thermal Infrared sensor
- TEMPO (Tropospheric Emissions: Monitoring of Pollution)
 - Hosted payload mission Earth Venture Instrument selection
 - UV-Vis hyperspectral sensor (290-690 nm); 2 x 4.5km; hourly NA

http://geo-cape.larc.nasa.gov

Mission Status

- Currently in Pre-formulation Pre-Phase A (\$2M to \$3M per year)
- Recommendation to implement mission as secondary payloads hosted on commercial geostationary satellites (Fishman et al., BAMS, 2012)
- TEMPO ~2019 launch on geo communications satellite
- GEO-CAPE is presently planned to launch no earlier than 2022
- Engineering and science studies to guide recommendations on ocean color requirements
- Planning field campaign in northern Gulf of Mexico for September 2013
- White paper describing and justifying coastal ocean color mission science and requirements to be published as NASA TM (May/June 2013)
- Collaboration between KOSC GOCI team and NASA GSFC moving forward for data mirror site & SeaDAS processing of GOCI data
 - NASA proposal funded to support GSFC collaboration with KOSC
- Promote further dialogue with international community in 2013
- GEO-CAPE meeting May 21-23, 2013 at NASA Ames

• Within AMF \leq 5, where atmospheric correction is feasible, coverage extends to nearly ~60° latitude in summer and ~50° in winter and from ~30°W to ~155° W (at equator).

Measurement & Instrument Requirements

	Threshold (minimum)	Baseline (goal)	
Temporal Resolution Targeted Events	1 hour	0.5 hour	
Survey Coastal U.S.	<3 hours	0.5 hour	
Region of Special Interest (RSI)	≥1 RSI at 3 scans/day	multiple RSI	
Other Coastal & Inland waters		≤3 hours	
Spatial Resolution (nadir)	375 m x 375 m	250 m x 250 m	
Field of Regard for OC retrievals	~60°N to 60°S; ~155°W to 35°W	same as threshold	
Coastal Coverage (coast to ocean)	375 km	500 km	
Spectral Range	345-1050 nm; 2 SWIR bands 1245 and 1640 nm	340-1100 nm; 3 SWIR bands 1245, 1640, 2135 nm	
Spectral Resolution	UV-VIS-NIR: ≤5 nm ; 400-450nm: ≤0.4 (NO ₂); SWIR: ≤20-40 nm	UV-VIS-NIR: ≤0.75 nm ; SWIR: ≤20-50 nm	
Signal-to-Noise Ratio (SNR) for Ltyp at 70° SZA	1000:1 for 350-800 nm (10nm FWHM); 600:1 for NIR (40nm FWHM); 250:1 & 180:1 for 1245 & 1640 nm (20 & 40nm FWHM); ≥500:1 NO ₂	1500:1 (350-800 nm) ; 100:1 for 2135nm (50nm FWHM); NIR, SWIR and NO ₂ same as threshold	
Onboard Calibration	Lunar monthly	Lunar monthly; Solar daily	
Lifetime Design	3 years 5 years		

GEO-CAPE Ocean Science Questions

Short-Term Processes

1. How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics?

Land-Ocean Exchange

Impacts of Climate Change & Human Activity

Impacts of Airborne-Derived Fluxes

Episodic Events & Hazards

interface related to changes within the watershed, and how do such exchanges influence coastal and open ocean biogeochemistry and ecosystem dynamics?

2. How are variations in exchanges across the land-ocean

- How are the productivity and biodiversity of coastal ecosystems changing, and how do these changes relate to natural and anthropogenic forcing, including local to regional impacts of climate variability?
- How do airborne-derived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes significantly affect the ecology and biogeochemistry of coastal and open ocean ecosystems?
- How do episodic hazards, contaminant loadings, and alterations of habitats impact the biology and ecology of the coastal zone?

GEO-CAPE Oceans STM

Draft v.4.6 - Feb. 28, 2013

Science Focus	Science Questions	Approach active of the section of th	Measurement Requirements	Instrument Requirements	Platform Requirem.	Ancillary Data Requirem
Short-Term Processes	How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics? (OBB 1)	GEO-CAPE will observe coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, and track carbon pools and pollutants. Two complementary operational modes will be employed: (1) survey mode for evaluation of diurnal to interannual variability of constituents, rate measurements and hazards for estuarine and continental shelf and slope regions with linkages to 3 4	Water-leaving radiances in the near-UV, visible & NIR for separating absorbing & scattering constituents & chlorophyll fluorescence Product uncertainty TBD Temporal Resolution:	Spectral Range: Hyperspectral UV-VIS-NIR • Threshold: 345-1050 nm; 2 SWIR bands 1245 & 1640 nm • Baseline: 340-1100 nm; 3 SWIR bands 1245, 1640, 2135 nm • Spectral Sampling & Resolution: • Threshold: UV-Vis-NIR; ≤2 & ≤5nm;	Geostationary orbit at 95W longitude to permit sub-hourly observations of coastal waters adjacent to the continental U.S., North, Central and South America	Western hemisphere data sets from models, missions, or field observations Measurement Requirements (1) Ozone (2) Total water
Land- Ocean Exchange	2 How are variations in exchanges across the land- ocean interface related to changes within the watershed, and how do such exchanges influence coastal and open ocean biogeochemistry and ecosystem dynamics? (OBB 1 & 2; CCSP 1 & 3)	containential and solve regions with images to open-ocean processes at appropriate spatial scales, and (2) targeted, high-frequency sampling for observing episodic events including evaluating the effects of diurnal variability on upper ocean constituents, assessing the rates of biological processes and coastal hazards. Measurement objectives for both modes include: (a) Quantify dissolved and particulate carbon pools and related rate measurements such as export production, air-sea CO2 exchange, net community production, respiration, and photochemical oxidation of dissolved organic matter.	Targeted Events: • Threshold: ≤1 hour • Baseline: ≤0.5 hour Survey Coastal U.S.: • Threshold: ≤3 hours • Baseline: ≤1 hour Regions of Special Interest (RSI): Threshold: ≥1 RSI 3 scans/day • Baseline: multiple RSI 3 scans/day	400-450nm: ≤0.4 & ≤0.8nm (for NO ₂ at spatial resolution of 750x750m at nadir); SWIR resolution: ≤20-40 nm • Baseline: UV-ViS-NIR: ≤0.25 & 0.75 nm; SWIR: ≤20-50 nm Signal-to-Noise Ratio (SNR) at Ltyp • Threshold: ≥1000 for 10 nm FWHM ≥600 for 40 nm FWHM (800-900 nm) FWHM (900-1050 nm); ≥250 and ≥18 1640 nm (20 & 40 nm FWHM); ≥500 • Baseline: ≥1500 for 10 nm (350-800	1 (350-800 nm); ; ≥300 for 40 nm 30 for 1245 & NO₂ band.	vapor (3) Surface wind velocity (4) Surface barometric pressure (5) Vicarious calibration & validation - coasta (6) Full prelaunch characterization (7) Cloud over Science
Impacts of Climate Change & Human Activity	3 How are the productivity and biodiversity of coastal ecosystems changing, and how do these changes relate to natural and anthropogenic forcing, including local to regional impacts of climate variability? (OBB 1, 2 & 3; CCSP 1 & 3)	(b) Quantify phytoplankton properties: biomass, pigments, functional groups (size/taxonomy/Harmful Algal Blooms (HABs)), daily primary productivity using bio-optical models, vertical migration, and chlorophyll fluorescence. (c) Measure the inherent optical properties of coastal ecosystems: absorption and scattering of particles 1 2 phytoplankton and detritus, CDOM absorption. (d) Estimate upper ocean particle characteristics including particle abundance and particle size distribution. 1 2 3	Other coastal and large inland bodies of water within ocean color FOR: • Baseline: ≤3 hours Spatial Resol. (nadir): • Threshold: ≤375 x 375 m • Baseline: ≤250 x 250 m Field of Regard for Ocean Color Retrievals: 60°N to 60°S; 155°W to 35°W	 Sasame: a loco in or inn (solu-out) SWIR and NO₂ bands same as threal the 2135nm (50nm FWHM) Threshold: Aggregate SWIR bands pixels to meet SNR; Baseline: No ag Scanning area per unit time: Thresk km²/min; Baseline: ≥50,000 km²/min Field of Regard: Full disk: 20.8° E-W and 19° N-S in capability from nadir for Lunar & Sola Error (as % of nadir pixel) 	hold; ≥100 for to 2x2 GSD gregation. shold: ≥25,000 maging r Calibrations	Requirements (1) SST (2) SSH (3) PAR (4) UV solar irradiance (5) MLD (6) Air/Sea pCO2 (7) pH (8) Ocean circulation (9) Tidal & other coastal currents (10) Aerosol
Impacts of Airborne- Derived Fluxes	4 How do airborne- derived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes affect the ecology and biogeochemistry of coastal and open ocean ecosystems? (OBB 1 & 2; CCSP 1)	 (e) Detect, quantify and track hazards including HABs (and petroleum-derived hydrocarbons. GEO-CAPE observations will be integrated with field measurements, models and other satellite data: (1) to derive coastal carbon budgets and determine whether coastal ecosystems are sources or sinks of carbon to the atmosphere, (2) to quantify the responses of coastal ecosystems and biogeochemical cycles to river discharge, land use change, airborne-derived fluxes, hazards and climate change, and 	Coastal Coverage*: width from coast to ocean: • Threshold: min 375 km • Baseline: min 500 km Scanning Priority: •Threshold: 1. U.S. Coastal Waters* 3 to 8 times per day 2. Other coastal and large inland bodies of water 3. Open ocean waters within FOR	Pointing Knowledge LOS <50% Pointing Accuracy LOS <100'	% <10%	deposition (11) run-off loading in coastal zone (12) Wet deposition in coastal zone (13) Wave height & surface wind speed Validation Requirements Conduct high frequency field measurements
Episodic Events & Hazards	5 How do episodic hazards, contaminant loadings, and alterations of habitats impact the biology and ecology of the coastal zone? (OBB 4)	(3) to enhance management decisions with improved information on the coastal ocean, such as required for Integrated Ecosystem Assessment (IEA), protection of water quality, and mitigation of harmful algal blooms, oxygen minimum zones, and ocean acidification.	download from other sensor making.	Baseline: ≤0.5% through mission lift Mission lifetime: Threshold: 3 years Baseline only: Near Real-Time satel s (GOES, etc.) for on-board autonomo on: Adequate to achieve the required on	fetime ; Goal: 5 years lite data us decision	and modeling to validate GEO- CAPE retrievals from river mouths to beyond the edge of the continental margin.

GEO-CAPE Science Questions are traceable to NASA's OBB Advanced Planning Document (OBB) and the U.S. Carbon Cycle Science Plan (CCSP).

* Coastal coverage within field-of-view (FOV) includes major estuaries and rivers such as Chesapeake Bay, Lake Pontchartrain/Mississippi River delta and the Laurentian Great Lakes,

e.g., the Chesapeake Bay coverage region would span west to east from Washington D.C. to several hundred kilometers offshore (total width of 375 km threshold).

Personnel involved in GEO-CAPE

Atmosphere Science Working Group Daniel Jacob, Harvard University David Edwards, NCAR Jay Al-Saadi, NASA HQ Laura Iraci, NASA ARC

Bryan Bloomer, EPA Greg Carmichael, University Iowa Kelly Chance, Harvard Smithsonian **Bob Chatfield, NASA ARC** Mian Chin, NASA GSFC Ron Cohen, UC Berkeley Jim Crawford, NASA LaRC **Annmarie Eldering**, NASA JPL Jack Fishman, U St. Louis Scott Janz, NASA GSFC Randy Kawa, NASA GSFC Shobha Kondragunta, NOAA NESDIS Xiong Liu, Harvard Smithsonian **Doreen Neil**, NASA LaRC Jessica Neu, NASA JPL Mike Newchurch, U. Alabama Huntsville Ken Pickering, NASA GSFC Brad Pierce, NOAA NESDIS Jose Rodriguez, NASA GSFC Stan Sander, NASA JPL Rich Scheffe, EPA Jim Szykman, EPA **Omar Torres**, Hampton University Jun Wang, University Nebraska Chris Sioris, Environment Canada

Ocean Science Working Group Antonio Mannino, NASA GSFC Joe Salisbury, U New Hampshire Paula Bontempi, NASA HQ Laura Iraci, NASA ARC

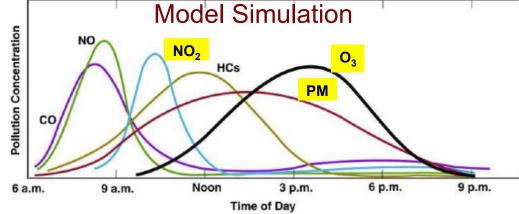
Bob Arnone, NRL Barney Balch, Bigelow Laboratory Francisco Chavez, MBARI Paula Coble. U South Florida Curt Davis, Oregon State U Carlos Del Castillo, Johns Hopkins U Paul DiGiacomo, NOAA Joachim Goes. LDEO/Columbia U Jay Herman, U Maryland Chuanmin Hu, U South Florida Carolyn Jordan, U New Hampshire **Zhongping Lee**, U Mass Boston Steve Lohrenz, U Mass Dartmouth Chuck McClain, NASA GSFC **Rick Miller**, ECU **Ru Morrison**. NERACOOS Colleen Mouw. U Wisconsin Frank Muller-Karger, U South Florida Chris Osburn, NCSU Blake Schaeffer, EPA Heidi Sosik, WHOI Rick Stumpf, NOAA Ajit Subramaniam, Columbia U Gerardo Toro-Farmer, U South Florida **Omar Torres**, NASA GSFC Maria Tzortziou, U Maryland Menghua Wang, NOAA

Mission Design Coordination Group

Jay Al-Saadi, NASA HQ Paula Bontempi, NASA HQ Betsy Edwards, NASA HQ Laura Iraci, NASA ARC

Kate Hartman, NASA GSFC Richard Key, NASA JPL Doreen Neil, NASA LaRC

Reginald Eason, NASA ESMPO Karen Moe, NASA ESTO


Joe Salisbury, U New Hampshire Antonio Mannino, NASA GSFC

Backup

Synthesis of Science Study Recommendations on Requirements

- **Temporal resolution:** <3 hour frequency needed; <1-2 hour desirable
- Spatial resolution: <500 x 500m (local) needed; 250 x 250m desirable
- If uncorrected, atmospheric variability (aerosols, NO_2 , O_3 , etc.) will lead to a false estimate of time-dependent underwater processes in coastal areas.
 - **Spectral resolution** of 0.8 nm (spectral sampling of 0.4 nm) would be required, at least in the 400-450 nm spectral range, for NO₂ correction.
 - Retrieval of aerosol properties (SSA and aerosol layer height) critical for nLw retrievals; Detection (& correction) of absorbing aerosols necessary

Strong need for in situ data sets with high temporal resolution (15-30 min)
& spectral resolution (2-5nm) and range (up to 750nm); above water Rrs to 1670nm.

Tropospheric chemistry evolves rapidly during the day

Air quality C

GEOCAPE

Ocean color from space

Ocean Color & Related Products

Mission Critical Products (drive requirements; heritage algorithms)

- Spectral remote sensing reflectances Rrs
- Chlorophyll-a, Primary Productivity
- Particulate Organic Carbon, Dissolved Organic Carbon, Particulate Inorganic Carbon (coccolithophore blooms)
- Total Suspended Matter
- Absorption coefficients of Colored Dissolved Organic Matter, Particles &
- Phytoplankton; Particle backscatter coefficient
- Water clarity (kd[490nm]; euphotic depth)
- Photosynthetically Available Radiation
- Fluorescence Line Height, Phytoplankton Carbon
- Functional/taxonomic group distributions
- Harmful Algal Bloom detection & magnitude
- Aerosols, NO₂ & other products for atmospheric corrections

Highly Desirable Products (experimental products)

- Particle size distributions & composition, other plant pigments, phytoplankton physiological properties, vertical migration detection
- Net Community Production, Export Production, Respiration, Photooxidation
- Air Sea CO₂ fluxes, pCO₂(aq)
- Terrigenous Dissolved Organic Carbon
- Petroleum detection and thickness

Approach

GEO-CAPE will observe coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, and track carbon pools and pollutants.

Two modes of operation:

1. **survey mode** for evaluation of diurnal to interannual variability of constituents, rate measurements and hazards ...

- U.S. coastal waters
- Regions of special interest
- All other coastal waters from ~50°N to 50°S

2. **targeted**, **high-frequency sampling** for observing episodic events (and support for coastal and deep ocean cruises) ... ¹²