MERIS Calibration

S. Delwart, L. Bourg, J-P Huot

- 1. Instrument & processing overview
- 2. Radiometric calibration method & results

OVERVIEW

- Instrument degradation
- Diffuser aging
- 3. Spectral Calibration method & results
 - a) Spectral Features of Erbium doped diffuser
 - b) Solar Fraunhofer Lines on white diffuser
 - c) O2-A earth view Spectral Campaigns
 - d) Instrument spectral model
 - e) Spectral Stability
- 4. Instrument calibration vs Vicarious calibration

- 1. Instrument & processing overview
- 2. Radiometric calibration method & results

OVERVIEW

- Instrument degradation
- Diffuser aging
- 3. Spectral Calibration method & results
 - a) Spectral Features of Erbium doped diffuser
 - b) Solar Fraunhofer Lines on white diffuser
 - c) O2-A earth view Spectral Campaigns
 - d) Instrument spectral model
 - e) Spectral Stability
- 4. Instrument calibration vs Vicarious calibration

Instrument Overview

- Radiometric Calibration based on in-flight measurements
- Relies on Spectralon diffuser charaterisation (pre-launch)
- Thuillier Solar Spectrum
- Uses the same radiometric model as in the L1 data processing

Diffuser-1: 15 days Diffuser-2: 3 months Diffuser-Er: 3 months peak 3 Diffuser-Er: 6 months peak 1

European Space Agency Agence spatiale européenne

$$X_{b,k,m,f} = \text{NonLin}_{b,m} \left[g(T_f^{\text{VEU}}) \cdot \left[A_{b,k,m} \cdot \left(L_{b,k,m,f} + G_{b,k,m}(L_{*,*,*,f}) \right) + Sm_{b,k,m,f}(L_{b,k,m,*}) \right] + g_c(T_f^{\text{CCD}}) \cdot C_{b,k,m}^0 \right]$$

- X_{bkm}, is the MERIS raw sample,
- NonLin $_{\rm b,m}$ is a non-linear function
- T_1^{vev} is the temperature of the MERIS amplifiers (VEUs);
- ${}^{\bullet}$ T_{1}^{oop} is the temperature of the MERIS detectors (CCDs)
- \cdot g(T) and ge(T) are (dimensionless) temperature correction functions;
- $AL_{b_{F,m}}$ the "absolute radiometric gain"
- $L_{b,k,m,l}$ the spectral radiance distribution in front of MERIS;
- Sm_{bike}, the smear signal, due to continuous sensing of light by MERIS;
- $C^{o}_{black,st}$ the calibrated dark signal (possibly including an on-board compensation), dependent on band and gain settings;
- $\underline{G}_{bk,\mu}$ a linear operator representing the stray light contribution to the signal

esa Radiometric Approach

- Calibration modes provides instrument numerical counts X_{cal}(I,k)
- Instrumental corrections (non-linearity, dark offset, smear) yields X' cal(I,k)
- Instrument Gain from X' $_{cal}(I,k) = G(I,k).L_{cal}(I,k)$
- L_{cal} computed from $E_0(I)$, geometry and diffuser BRDF
 - Diffuser BRDF characterised on-ground
 - $E_0(I)$, from a model + seasonal variation
 - Geometry from orbit and instrument pointing characterisation
- Space environment implies ageing of Diffuser and Optics
 - 2nd diffuser to monitor diffuser-1 BRDF ageing
 => Diffuser Aging model
 - frequent calibration to monitor Instrument degradation
 instrument degradation model

Radiometric Processing esa

International Ocean Colour Science , Darmstadt, 7th May 2013

ENVISAT

Radiometric Calibration esa

Living Planet

Gain

G(t)

On-Orbit Spectral characterisation measurements (Erbium Doped diffuser, Fraunhofer lines, O2-A)

Extra terrestrial solar (Thuillier et al.) In-band irradiance computed per pixel with on-board derived instrument Spectral Model/

European Space Agency Agence spatiale européenne

1. Instrument & processing overview

2. Radiometric calibration method & results

OVERVIEW

- Instrument degradation
- Diffuser aging
- 3. Spectral Calibration method & results
 - a) Spectral Features of Erbium doped diffuser
 - b) Solar Fraunhofer Lines on white diffuser
 - c) O2-A earth view Spectral Campaigns
 - d) Instrument spectral model
 - e) Spectral Stability
- 4. Instrument calibration vs Vicarious calibration

COMPANIE Collibration

ENVISAT

Results

Radiometric Calibration raw digital counts

Inverse Gain

Corresponding Radiometric "Gain" Coefficients

European Space Agency Agence spatiale européenne

Diffuser Aging

Diffuser aging is <2 % after than 10 years in space

Diffuser Degradation process is linear

0.0% -0.1% 400 500 600 700 800 900 wavelength Diffuser Degradation rate per year

Ageing Linear Fit results: BRDF loss in %/year

(65deg illumination) tadt, 7th May 2013 Living Planet

European Space Agency Agence spatiale européenne

esa

International Ocean Colour Science , Darmstadt, 7th May 2013

0.3%

0.2%

0.1%

esa Instrument Degradation

European Space Agency Agence spatiale européenne

International Ocean Colour Science, Darmstadt, 7th May 2013

E2010*

0

orbit Diffuser illumination

- 1. Instrument & processing overview
- 2. Radiometric calibration method & results

OVERVIEW

- Instrument degradation
- Diffuser aging
- 3. Spectral Calibration method & results
 - a) Spectral Features of Erbium doped diffuser
 - b) Solar Fraunhofer Lines on white diffuser
 - c) O2-A earth view Spectral Campaigns
 - d) Instrument spectral model
 - e) Spectral Stability
- 4. Instrument calibration vs Vicarious calibration

esa **Erbium Doped Diffuser**

width (nm)

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

ē

<u>P</u> S

Erbium absorption spectrum

Band settings j

European Space Agency Agence spatiale européenne

Erbium Results

Method: Determine the position of the absorption peak in pixel number with correction for Air-Vacuum changes (Edlen)

European Space Agency Agence spatiale européenne

Fraunhofer Lines

White diffuser-1 measurement

line 1 (393nm)	line 2 (485nm)	line 3 (588nm)	line 4 (655nm)	line 5 (855nm)	line 6 (867nm)
393.125	480.625	584.375	653.125	850.625	863.125
394.375	481.875	585.625	654.375	851.875	864.375
395.625	483.125	586.875	655.625	853.125	865.625
396.875	484.375	588.125	656.875	854.375	866.875
398.125	485.625	589.375	658.125	855.625	868.125
399.375	486.875	590.625	659.375	856.875	869.375
400.625	488.125	591.875	660.625	858.125	870.625
	489.375	593.125		2	

Band settings (3 configurations)

Examples of Fraunhofer absorption spectrum With MERIS spectral response overlay

European Space Agency Agence spatiale européenne

COMPANY OF SOLUTION OF SOLUTIANO OF SOLUTION OF SOLUTIANO OF SOLUTIANO

Method: Spectrum-matching, with correction for Air-Vacuum (Edlen)

European Space Agency Agence spatiale européenne

For three orbits every six months, MERIS is configured to observe in detail the O2A absorption features

Oxygen O2A absorption spectrum MERIS spectral response overlay

Measurements over Natural target

name	centre	width (nm)
blue-2	442.5	10
red-1	665	10
ref-1	753.125	6.25
02-0	758.125	1.25
02-1	759.375	1.25
02-2	760.625	1.25
02-3	761.875	1.25
02-4	763.125	1.25
02-5	764.375	1.25
02-6	765.625	1.25
02-7	766.875	1.25
02-8	768.125	1.25
02-9	769.375	1.25
ref-2	778.75	7.5
IR-1	865	10

O2A Campaign Band setting

Results All Methods

European Space Agency Agence spatiale européenne

Instrument Model

E

E

$$\lambda(k,l) = \overline{\lambda}(l) + \Delta\lambda(k)$$

Simple instrument model where k and /stand for the spatial and spectral co-ordinates of a given detector respectively, the mean dispersion law -mainly linear- is a polynomial of order 3 (best fit), and, the across-track variation term, is a linear fit of the data at 395, 656 and 671nm expressed relative to its mean value

European Space Agency Agence spatiale européenne

esa

International Ocean Colour Science , Darmstadt, 7th May 2013

Livina`Pl

Spectral Stability

Erbium doped diffuser measurements

Spectral stability since end of commissioning is:

- Camera 4 has drifted by less than 0.12 nm
- Camera 2 has drifted by less than 0.08 nm
- Camera 1, 3 & 5 have drifted by less than 0.05 nm

No spectral drift correction is included in the processing as the spectral model, based on Fall 2003 data (orbit ~7800), is representative of the complete mission.

European Space Agency Agence spatiale européenne

CONTROL OF CONTROL OF

- ENVISAT
- 1. In-flight spectral measurements \rightarrow instrument spectral model $\lambda(k,l) = \overline{\lambda}(l) + \Delta \lambda(k)$
- 2. In-band spectral irradiance per pixel by integration of Thuillier et al Solar Irradiance
- 3. Diffuser BRDF model (Rahman) fitted on charaterisation data, interpolated spetrally from char. Wavelengths to MERIS bands
- 4. Compute instantaneous 'gain' factors for each calibration acquisition (every two weeks)
- 5. Correct for diffuser ageing
- 6. Model time evolution as per Barnes et al: G(t0): gain at orbit 297, β : amplitude, δ^{-1} : time constant, γ : \Leftrightarrow time offset at orbit 297

$$G(t) = \boldsymbol{G}(t_0) \cdot (1 - \boldsymbol{\beta} \cdot (1 - \boldsymbol{\gamma} \cdot e^{-\boldsymbol{\delta} t}))$$

The Radiometric calibration of MERIS is obtained from a well protected on-board diffuser plate, used as a secondary standard

The stability (aging) of the diffuser plate is monitored by the second diffuser plate deployed 10 time less frequently. Results show Diff-1 to have aged <2% => an aging of <0.2% for Diff-2.

The precise knowledge of the instrument spectral characteristics is obtained from regular spectral calibration campaigns and a simple instrument spectral model with an accuracy of <0.2nm, and have shown the instrument to be stable to better than 0.1 nm over 10 years.

The instrument degradation (trending) has been monitored and showed that Meris has degraded by < 5% in the blue and < 1 % in the NIR.

European Space Agency Agence spatiale européenne

- 1. Instrument & processing overview
- 2. Radiometric calibration method & results

OVERVIEW

- Instrument degradation
- Diffuser aging
- 3. Spectral Calibration method & results
 - a) Spectral Features of Erbium doped diffuser
 - b) Solar Fraunhofer Lines on white diffuser
 - c) O2-A earth view Spectral Campaigns
 - d) Instrument spectral model
 - e) Spectral Stability
- 4. Instrument calibration vs Vicarious calibration

Calibration vs corrections

European Space Agency Agence spatiale européenne

Calibration vs corrections

Living Planet

European Space Agency Agence spatiale européenne

OC requires Vicarious Calibration ... today

However

Use of Vicarious Calibration blindly does not allow for improvements in either L1 and L2 processing.

Vicarious Calibration should first be used to better understand the limitations of L1 and L2 processing, leading to improved instrument corrections and geophysical modeling and only then used for final adjustment only if needed.

Livina`Pl

European Space Agency Agence spatiale européenne