MODIS-SEVIRI synergy

Quinten Vanhellemont

Griet Neukermans & Kevin Ruddick

IOCS Splinter Session 3 Geostationary Ocean Colour Radiometry 6 May 2013

SEVIRI is a geostationary meteo sensor, gives a "full disk" image every 15' Two broad 'VIS' bands: VIS06 = 570 – 710 nm, VIS08 = 740 – 880 nm GSD 3x3 km at nadir, ~3x6km at 50°N First used for OC by Neukermans et al., 2009, 2012 (SPM/T/Kpar)

Potential for synergy!

Synergy: Combine the high temporal signal from SEVIRI with the spatial resolution from MODIS

$$\rho_{W^{(SYN)}}(t) = \rho_{W^{(MOD)}}(t_0) \cdot F^{SEV}(t)$$

$$F^{SEV}(t) = \frac{\rho_{w^{(SEV)}}(t)}{\rho_{w^{(SEV)}}(t_0)}$$

- = marine reflectance MODIS/SEVIRI/Synergy
 - = SEVIRI image times

 ρ_w

 t_0

= SEVIRI image time closest to MODIS overpass (noon)

Validation with in situ data

CEFAS Smartbuoys record turbidity several times per hour (increasing T): Dowsing West Gabbard Warp

Remote sensing TU using Nechad et al. (2009)

MODIS Aqua 2008-2009 SPM

SEVIRI/Synergy- in situ comparison

Conclusions

- High frequency dynamics detected with SEVIRI can be used to modulate higher spatial resolution MODIS data
- The resulting synergy product, resolves temporal dynamics at high spatial resolution, and has lower errors when compared with in situ measurements.
- Is limited to cloud position at MODIS overpass. The approach is only valid for vertical processes.

Acknowledgments

NASA: MODIS Aqua data EUMETSAT and KMI: SEVIRI data CEFAS: in situ Smartbuoy data BELSPO: funding of the GEOCOLOUR project

References

- Neukermans G., Ruddick K., Bernard E., Ramon D., Nechad B. & Deschamps P.-Y. (2009). Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea. Optics Express, Vol. 17(16), pp. 14029–14052
- Neukermans, G. (2012). Optical in-situ and geostationary satellite-borne observations of suspended particles in coastal waters, PhD Thesis, Université du Littoral Côte d'Opal. Academic and Scientific Publishers, Brussels, Belgium (ISBN 978 90 7028 949 2).
- Neukermans, G., K. Ruddick and N. Greenwood (2012). Diurnal variability and light attenuation in the southern North Sea from the SEVIRI geostationary sensor. Remote Sensing of Environment 124, 564–580. doi:10.1016/j.rse.2012.06.003
- Vanhellemont, Q., G. Neukermans, and K. Ruddick (accepted). Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution. Rem Sens Env (special issue Liège colloquium 2012)

Validation with independent satellite data

Validation with independent satellite data

Other regions in "BEL" crop

Other regions in FULL disk