

Processing & validation environment ODESA - Optical Data processor of ESA MERMAID - MERIS Matchup In-situ Database

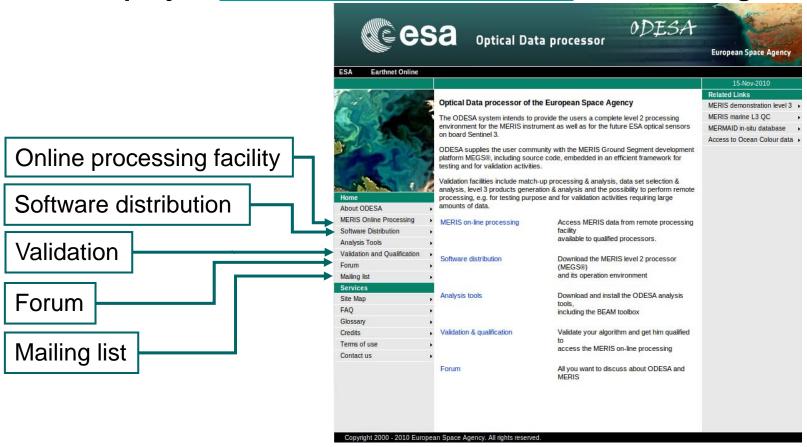
Splinter Session 11
Satellite data file formats and tools for easy science exploitation

International Ocean Couleur Science Meeting 6th May 2013, Darmstadt

Christophe Lerebourg¹, Nicolas Gilles¹, Julien Demaria¹, Olivier Sardou¹, Constant Mazeran¹, Véronique Bruniquel¹, Ludovic Bourg¹, Odile Fanton d'Andon¹, Philippe Goryl², Henri Laur²

(1) ACRI-ST, 260 route du Pin Montard, Sophia Antipolis, 06600, France (2) ESA/ESRIN Via Galileo Galilei CP 64, Frascati, Roma, 00044, Italy

Overview



- □ ODESA: environment for developing and validating MERIS Level 2 algorithms in the ESA Ground Segment
- ☐ Main feature of ODESA: a software for coding and data processing
 - ✓ 2011: Public release with binary code
 - ✓ 2012: Public release with source code of 3rd MERIS reprocessing
 - Ongoing: evolution for next generation of ESA optical sensors: OLCI and SLSTR on-board Sentinel-3
- □ ODESA includes other facilities:
 - ✓ Validation: full compatibility with the MERMAID database
 - ✓ Remote-processing: ODESA online processing
 - ✓ Support: forum, training sessions (two in 2012, two in 2013)

Overview

Website project http://earth.eo.esa.int/odesa for accessing all facilities

Contact for support, help, feedback: service@odesa-info.eu

Forum: help and foster the ocean colour community with MERIS (algorithms, products...) & prepare it to S3 (data format, validation, protocols...)

The ODESA software runs on Linux and is made of:

- ✓ Source codes in C language
- ✓ Auxiliary Data Files: ESA nominal + way to include new user's files
- ✓ A Java interface for managing processor + configurations + jobs
- ✓ Documentation

ODESA = Free user interface of MEGS

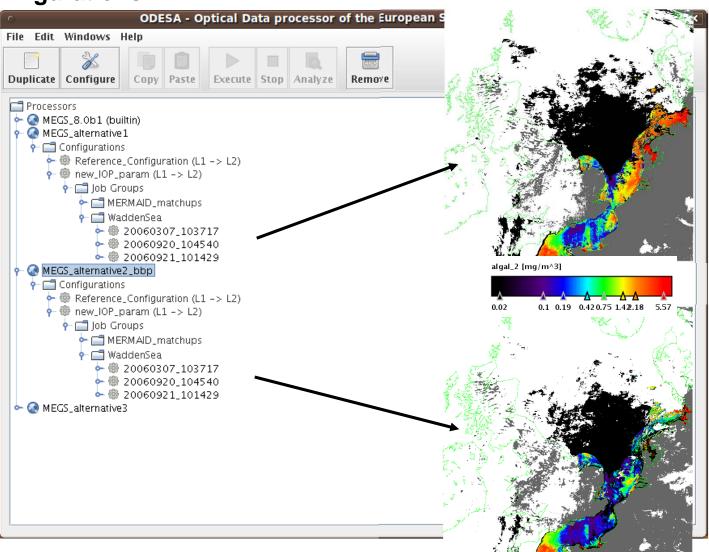
MEGS (ACRI)

MERIS Ground Segment prototype

3rd reproc version: MEGS8.0

Configuration of auxiliary data, jobs, outputs...

IPF (ESRIN)


Instrument Processing Facility

3rd reproc version: IPF 6.03

Developing in ODESA = developing in the ESA Level 2 Ground Segment

ODESA architecture makes possible rigorous comparison of algorithms, in controlled configurations

Algorithm development in ODESA is made easier by:

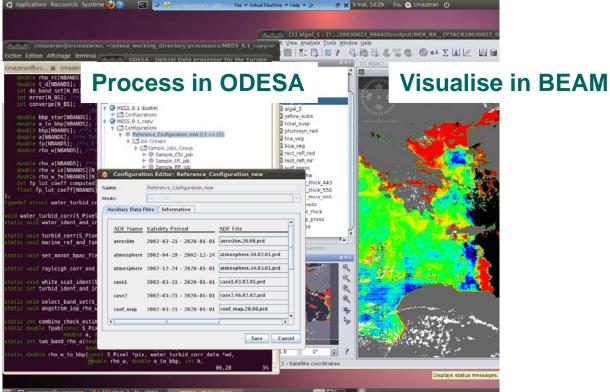
- ✓ Use of standard programming languages: C (nominal code) and Fortran/C++
- ✓ Perfect alignment between the code and the ESA documentation (DPM)

DPM related to bright pixel atmospheric correction

bright_water_ac.c source code

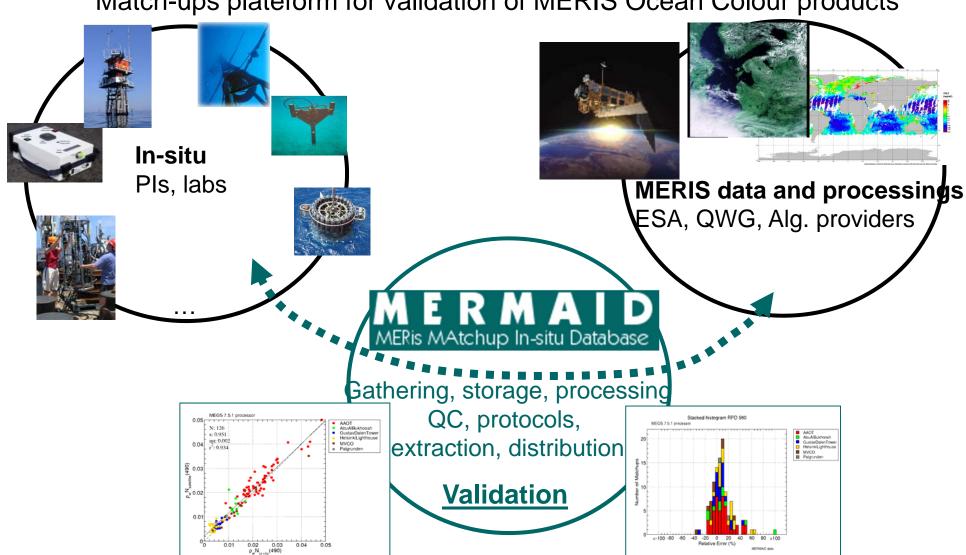
```
Calculate IOPs
bbp(b1)=bb 775 ie(bs)*bbp star(b1)/bbp star(b775)
                                                                                  (2.6.8.4-11)
                                                                                                            wd->bbp[b1] = bb 775 ie[bs] * wd->bbp star[b1] / wd->bbp star[bb775]
bbp(b2)=bb 775 ie(bs)*bbp star(b2)/bbp star(b775)
                                                                                  (2.6.8.4-12)
a(b1) = aw(b1) + bbp(b1)*a to bb(b1)
                                                                                  (2.6.8.4-13)
                                                                                                            wd->bbp[b2] = bb 775 ie[bs] * wd->bbp star[b2] / wd->bbp star[bb775]
a(b2) = aw(b2) + bbp(b2)*a to bb(b2)
                                                                                  (2.6.8.4-14)
                                                                                                            wd->a[b1] = aw[b1] + wd->bbp[b1] * wd->a to bbp[b1];
Calculate F prime factor
                                                                                                           wd->a[b2] = aw[b2] + wd->bbp[b2] * wd->a to bbp[b2];
fp(b1)=F_ab(a(b1), bbw(b1), bbp(b1), \theta_s, \theta_v, \Delta\phi, Ws, b1)
                                                                                  (2.6.8.4-15)
fp(b2)=F ab(a(b2), bbw(b2), bbp(b2), \theta_s, \theta_v, \Delta\phi, Ws, b2)
                                                                                  (2.6.8.4-16)
                                                                                                            wd \rightarrow fp[b1] = fpab(pix, wd, wd \rightarrow a[b1], bbw[b1], wd \rightarrow bbp[b1], b1);
                                                                                                            wd \rightarrow fp[b2] = fpab(pix, wd, wd \rightarrow a[b2], bbw[b2], wd \rightarrow bbp[b2], b2);
```

- ✓ Makefile for quick compilation: make install
- ✓ Documentation: online quick start guide + tutorial
 - ✓ Tips for debugging
 - ✓ Examples for adding new code
- ✓ Forum to reply to technical questions

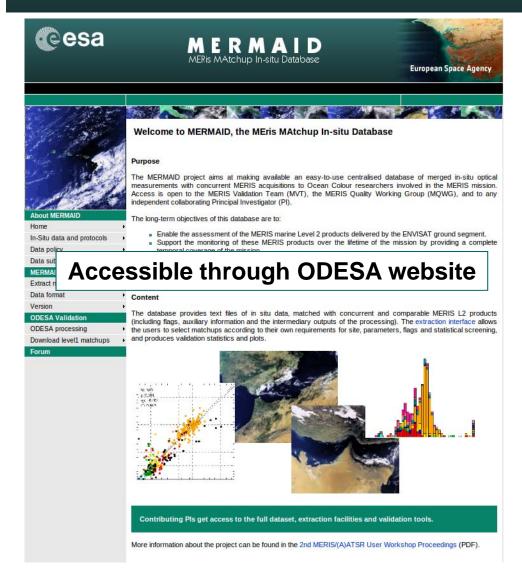


Output options:

Edit code


- Envisat and/or NetCDF format
- « breakpoint » and « intermediate » parameters, not available in Level 2 products: Rayleigh and aerosol reflectance, transmittances, internal flags, ...
- Any new variables in the code may be stored in output NetCDF
- Limit processing to a region of interest or a branch (water/land/cloud)

Compatible formats with latest versions of BEAM (Brockmann Consult)

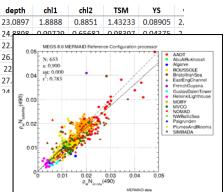


Match-ups plateform for validation of MERIS Ocean Colour products

Data policy to respect proprietary rights & acknowledgement of contributors

Protocol documents

on *in situ* data, written in collaboration with all PIs. It explains the methods, measured quantities, quality checks



Data catalogue

listing all datasets, PI, affiliation, contact.
GoogleEarth map to visualise location of all matchups

Tools to build the matchup (size, flag, 72 26, 73 22) outliers removal...) 74 27. on user's own criteria. MERIS extractions, stats, validation plots

job_group_scene_MERIS

20020621_203554 20070108_095130 BOUSSOLE_20060210

● extraction_MOBY
● extraction_MVCO
● extraction_NOMAD
● extraction_NWBalticSea

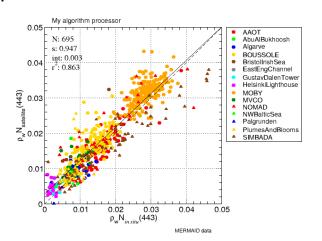
@ extraction_Palgrunden

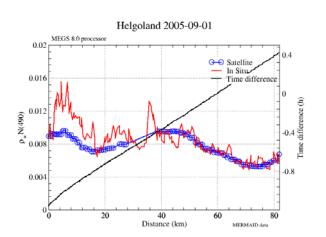
extraction_AbuAlBukhoosh
 extraction_Algarve
 extraction_BOUSSOLE
 extraction_BristollrishSea
 extraction_GustavDalenTower

extraction_HelsinkiLighthouse

👇 🔚 Job Groups

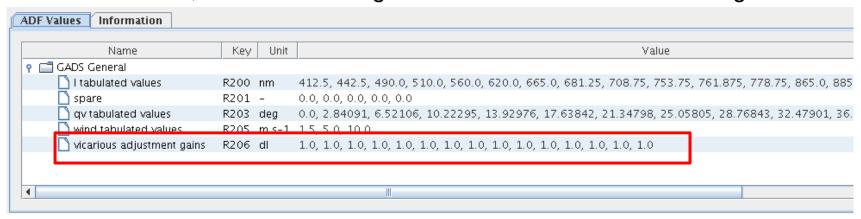
ODESA text file processing:


- Processing of MERMAID matchup text files, i.e. MERIS pixels matching in-situ data
- Allows a straightforward validation against in-situ data

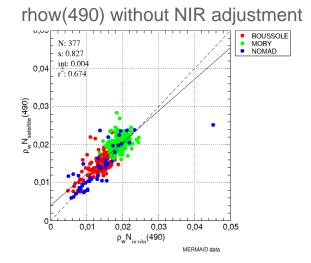

Four steps:

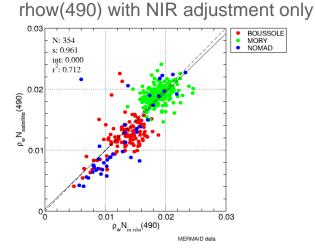
- 1) Download the « Level1 extraction » from MERMAID website
- Process directly in ODESA, like an ENVISAT file

- 3) Get output « Level2 extraction » file (csv format)
- 4) Upload to MERMAID website for data screening, statistics, validation plot

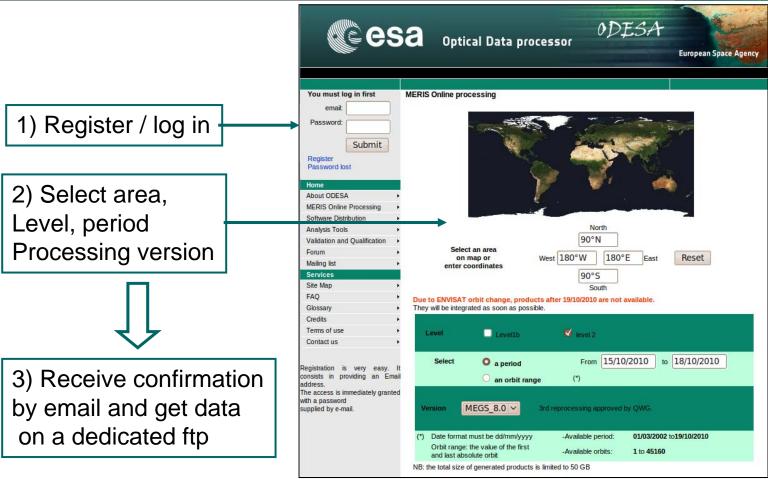


Because matchups are already extracted, this takes only few minutes




Simple example: what is the impact of the NIR vicarious calibration alone in MERIS 3rd reprocessing?

✓ In ODESA, create two configurations with differents vicarious gains


✓ Launch the jobs on matchups, upload results on the website and get results

Online processing

- This facility gives possibility to distribute data of alternative processing
 - Today for MERIS 2nd and 3rd reprocessing
 - Possibly for any user' alternative, after qualification by MERIS QWG, when coded in ODESA

Conclusion

- ODESA software
 - Linux interface of the ESA MERIS Level2 ground segment
 - Environment to implement and test new algorithms:
 - New auxiliary data files (e.g. aerosol models, physical parameters ...)
 - Modified algorithm
 - New algorithm (new L2 products)
 - Processing in controlled configuration
 - Documentation: DPM, quick start guide, tutorial
- ODESA can process MERMAID text files (matchup with in-situ)
 - Beneficiate from strong quality of MERMAID matchups, documentation
 - Easy to assess immediately impact of algorithmic changes
- Alternative algorithms qualified by MERIS Quality Working Group can be transfered to the online facility for test and distribution
 - Proposed method to ESA for preparation of MERIS 4th reprocessing
- Next training session: 31st August 2013, Baltic Sea Science Congress, Klaipeda, Lithuania. See http://www.nordbaltrems.org