

MODIS optical throughput degradation Impact on relative spectral response and on ocean color products

5/15/2017 IOCS

Shihyan Lee Gerhard Meister

- Relative Spectral Response (RSR) is a key component in radiometric calibration and ocean color products retrieval
- On-orbit, if the instrument's optical throughput change varies by wavelength, RSR will change (modulate)
- Estimate MODIS Aqua Optical throughput change vs. wavelength
- Estimate RSR modulation over time.
 - Impact on radiometric calibration
 - Impact on ocean color products

optical degradation \rightarrow modulated RSRs \rightarrow radiometric calibration

\rightarrow ocean color products

MODIS Aqua Optical Degradation

Aqua normalized gain (1/m1) vs. time

g = T * r * Eg

- g: system gain
- *T*: optical throughput
- *r:* detector's responsivity
- *Eg*: electronic gain

	Wavelength (nm)	
Band 8	412	
Band 9	443	
Band 10	488	
Band 11	531	
Band 12	551	
Band 13	667	
Band 14	678	
Band 15	748	
Band 16	869	

Electronic Gain

Aqua Optical Degradation

+2002

Assume detector responsivity (*r*) change among bands/detectors are the same, optical degradation (D) can be computed by system gaine (g) and electronic gain (Eg)

¥ 2005 2008 △2011 2015

 $D(\lambda,t) = \frac{\overline{g(\lambda,t)}}{Eg(\lambda,t)}$

Modulated RSRs

 $D(\lambda,t) = degradation at wavelength \lambda at time t$

Impact from RSR change In-band region: mostly cancel out. large at high OOB region. small on low RSR region

Target Spectra

Modulated RSR Effects

Temporal trend for RSR modulation impact on ocean color bands

- (a) System gain determination
- (b) ocean scene radiance
- (c) total bias (B_{ret}) on ocean color products

Scan Angle dependency

- The estimated MODIS Aqua optical throughput showed a degrading trend that ulletis wavelength dependent
- The wavelength dependent degradation will reshape the relative spectral ulletresponse (RSR) function.
- The RSR is also scan angle dependent due to change in response versus \bullet scan angle.
- Aqua RSR modulation impact on ocean color products is most significant on ulletband 8 (up to 1.8% at typical ocean scene).
- ullet
- The RSR modulation impact for the rest of the ocean bands are at $\sim < 0.1\%$. Large out-of-band response in RSR is the main reason for wavelength lacksquaredependent, optical throughput degradation to have meaningful impact on RSR and ocean color products

Backup Slides

	Center Wavelength	Band Width
	(nm)	(nm)
Band 8	412	15
Band 9	443	10
Band 10	488	10
Band 11	531	10
Band 12	551	10
Band 13	667	10
Band 14	678	10
Band 15	748	10
Band 16	869	10

Table 1: MODIS ocean band spectral specification.

