

European Space Agency

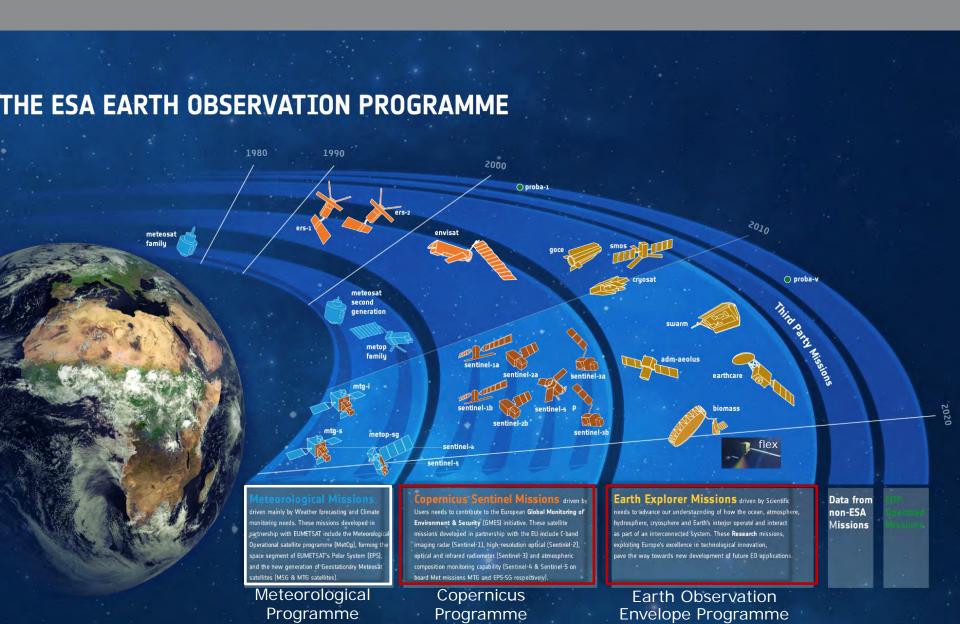
OCR using Copernicus Sentinel-2 and status of Sentinel-3

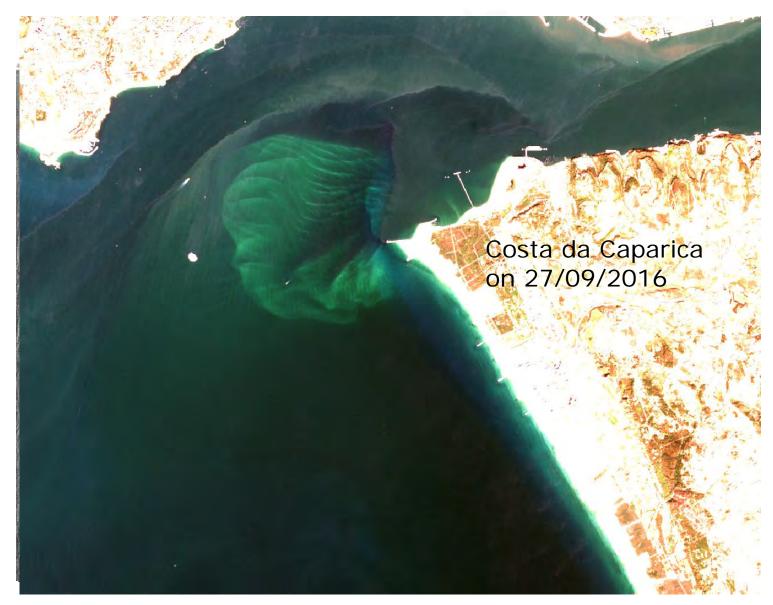
Craig Donlon Sentinel-3 Mission Scientist (ESA/ESTEC)
Bianca Hoerch Sentinel-2 Mission Manager (ESA/ESRIN)
Ferran Gascon Sentinel-2&FLEX data quality
(ESA/ESRIN)

Bruno Berutti Sentinel-3 Project Manager (ESA/ESTEC)
Susanne Mecklenburg Sentinel-3 Mission Manager

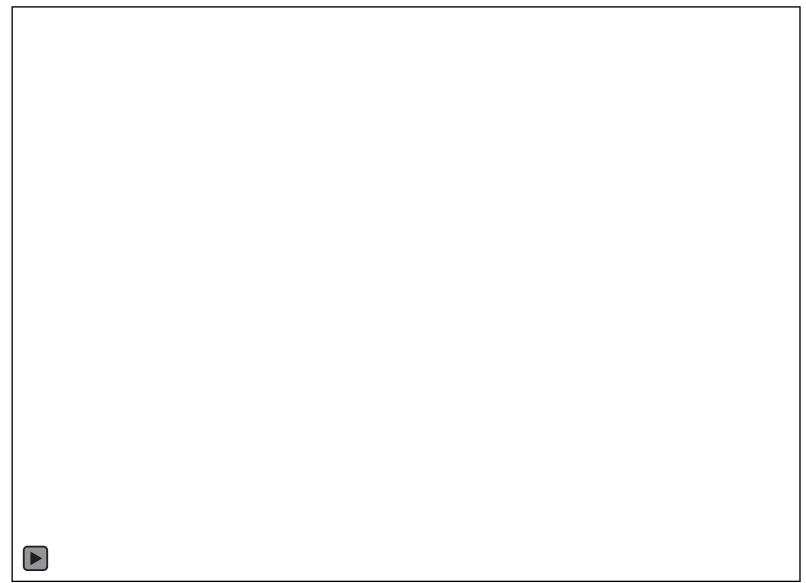
(ESA/ESRIN) IOCS 2017, Lisbon, Portugal, 15th May 2017

Overview


- The Copernicus Sentinel-2
 Mission and OCR
 - Performance
 - Products
 - Example applications
- Fiducial Reference Measurements
 - FRM4SOC developments
 - AMT4Sentinel developments
- Sentinel-3B status
- Summary


Earth Observation in ESA

Lisbon from Sentinel-2A MSI 05/05/2017 & 27/09/16 **CSa**



UNCLASSIFIED - For Official Use

(opernicus Sentinel-2B Launch 7th March 2017

ESA UNCLASSIFIED - For Official Use

Sentinel-2B

Netherlands 16 Mar 2017

European Space Agency

ESA UNCLASSIFIED - For Official Use

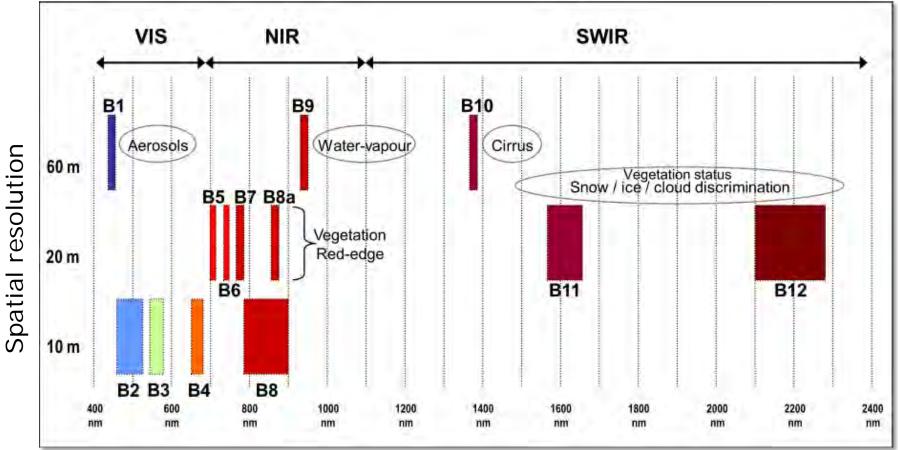
C Donlon | 15/05/2017 | Slide 6

opernicus Sentinel-2 Mission Overview

- **Two** Identical Spacecraft operating in twin configuration
- ☐ Sun-synchronous orbit **786 km**, **LTDN** 10:30 AM
- Multi-Spectral Instrument (MSI) pushbroom imager: filter-based, multi-spectral sampling, 295 km swath with 13 spectral bands (VIS, NIR & SWIR), at 10, 20 and **60 m** spatial resolution
- **5 day** revisit at Equator with 2 satellites
- 7 years design life time for each satellite, consumables for 12 years

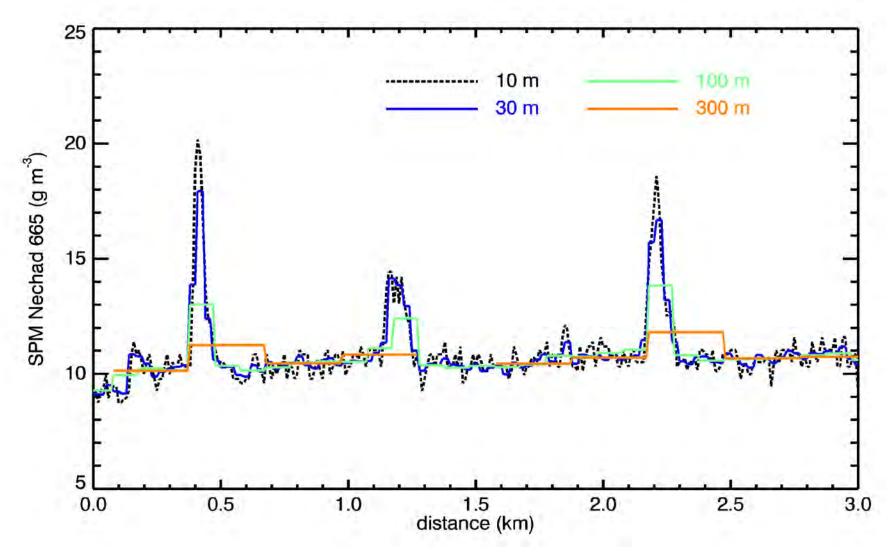
Sentinel-2 A/B/C/D

C Donlon | 15/05/2017 | Slide 7


ESA UNCLASSIFIED - For Official Use

opernicus Multi-spectral Imager band settings

- 13 MSI bands are optimized for accurate atmospheric correction and vegetation monitoring
- But clearly have huge potential for marine applications

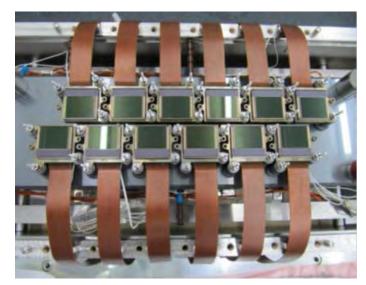


Wavelength

opernicus S2A resolution in E. Channel 28/08/15

(Quinten Vanhellemont & Kevin Ruddick)

C Donlon | 15/05/2017 | Slide 9 UNCLASSIFIED - For Official Use



opernicus MSI Calibration

Calibration of detectors using a PTFE diffuser once per month and after every decontamination activity (~every 6 months)

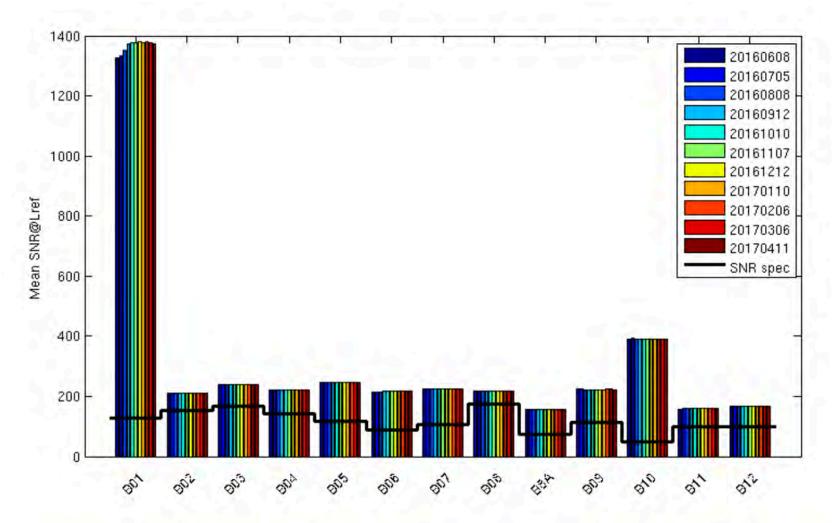
← VNIR Flight Focal Plane (Astrium SAS (France) and e2v Technologies (UK))

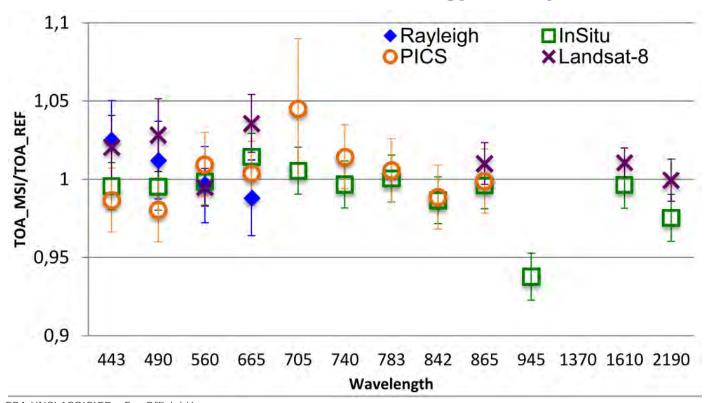
→ MSI Calibration and Shutter Mechanism showing the very large (!) solar calibration diffuser. (Sener, Spain and CSL, Belgium)

C Donlon | 15/05/2017 | Slide 10

ESA UNCLASSIFIED - For Official Use

opernicus SNR Performance S2A




Figure 5: Evolution of the SNR performance since 06/08/2016.

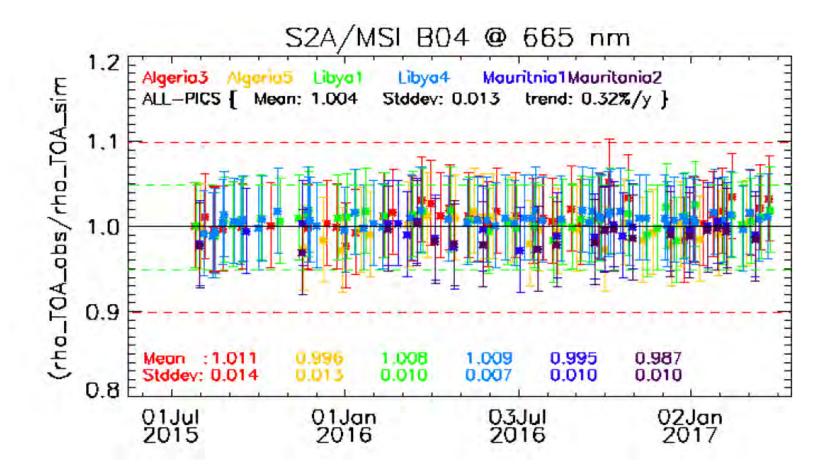
ESA UNCLASSIFIED - For Official Use C Donlon | 15/05/2017 | Slide 11

opernicus Radiometric accuracy

- Different methods are used to validate the absolute radiometric accuracy, and provide relatively consistent results
- < 5% requirement met for all spectral bands not affected by gaseous absorption
- B09 and B10 performance better addressed by inter-band validation
- Sentinel-2 Calibration methodology is very effective and reliable

Rayleigh (deep ocean)

(PICS) Pseudo-Invariant Calibration Sites - Desert


SA UNCLASSIFIED - For Official Use

pernicus Evolution of the radiometric response

- S2A: Better than 1% per year in VIS-NIR bands
- No obvious evidence of on-board calibration diffuser degradation

ESA UNCLASSIFIED - For Official Use

C Donlon | 15/05/2017 | Slide 13

+

Summary of S2A Performance (05/05/2017)

Requirement	Description	Measured performance < 11 m at 95.5% confidence (baseline 02.04)	
Absolute geolocation (without ground control points)	The geo-location uncertainty shall be better than 20 m at 2σ confidence level (without Ground Control Points).		
Multi-spectral registration	The inter-channel spatial co-registration of any two spectral bands shall be better than 0.30 of the coarser achieved spatial sampling distance of these two bands at 3 σ confidence level.	< 0.3 pixel at 99.7% confidence	
Absolute radiometric uncertainty	The absolute radiometric uncertainty shall be better than 5 % (goal 3%).	B1 to B12, excl. B10: < 5%±2%	
SNR	The Signal-to-Noise Ratio (SNR) shall be higher than specified values (see Table 2-4 in this document)	All bands compliant with > 27% margin	

ESA UNCLASSIFIED - For Official Use

pernicus S2 Mission status reports

User support Copernicus help desk: EOSupport@copernicus.esa.int

S2MPC Monthly Data Quality Report:

https://sentinel.esa.int/web/sentinel/userguides/sentinel-2-msi/document-library

ESA UNCLASSIFIED - For Official Use C Donlon | 15/05/2017 | Slide 15

opernicus Sentinel-2 Products

Name	High-level Description	Production	Preservation Strategy	Volume
Level-1B	Top-of-atmosphere radiances in sensor geometry	Systematic	Long-term	~27 MB (each 25x23km²)
Level-1C	Top-of-atmosphere reflectances in cartographic geometry	Systematic	Long-term	~500 MB (each 100x100km²)
Level-2A (New)	Bottom-of-atmosphere reflectances in cartographic geometry	On user side (using Sen2Cor on Sentinel-2 Toolbox**)	N/A	~600 MB (each 100x100km²)

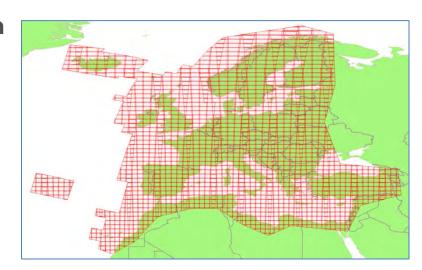
**: https://sentinels.copernicus.eu/web/sentinel/toolboxes/sentinel-2

ESA UNCLASSIFIED - For Official Use

opernicus L1C Products

Characteristics	Current status
Definition	Top-of-Atmosphere reflectances
Projection	Cartographic Projection (UTM)
Dissemination unit	Since September 2016: Single MGRS tile 110 x 110 km ²
Production	Systematic
Preservation	Long-term
Volume	~ 600 MB
Images format	JPEG 2000 15 bits integer with quantization value = 10000
Metadata	Acquisition conditions Processing parameters Quality checks and masks Cloud / cirrus masks
Auxiliary data	Meteorology (pressure, ozone, water vapour)

ESA UNCLASSIFIED - For Official Use


opernicus L2A Production Pilot Project 'Europe'

- A systematic production of L2A Bottom of Atmosphere products over Europe started in September 2016.
- The Sen2Cor processor (version 2.3.0)
 has been integrated in the ESA-RSS
 environment
- It generates daily up to 300GB of L2A products data (~600 Tiles per Day).
- Products granularity of L2A will be the same of L1C available on OPEN Access data hub.
- L2A product format is aligned with the new compact naming convention.

L2A products now available through

http://scihub.copernicus.eu

Potential validation test sites

Characteristics	Current status
Definition	Bottom-of-Atmosphere reflectances
Projection	Same as L1C
Dissemination unit	Same as L1C from May 2 nd 2017 via SciHub
Production	User-side production with publicly available software Sen2cor
Preservation	N/A
Volume	~ 700 MB
Images format	JPEG 2000 15 bits integer with quantization value = 10000
Metadata	Same as L1C + Radiometric classification (cloud, cloud shadows, water, snow)
Auxiliary data	Same as L1C + Retrieved aerosol optical thickness and water vapour

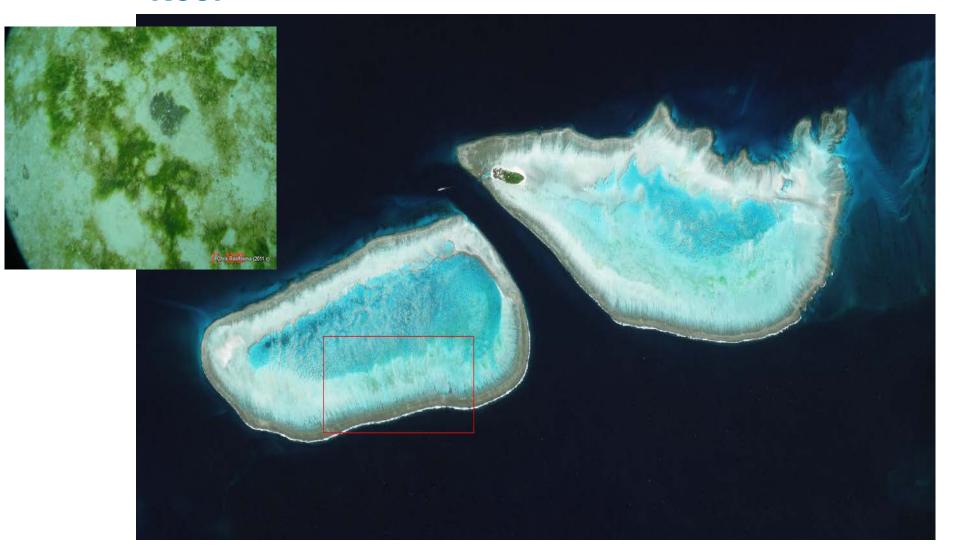
C Donlon | 15/05/2017 | Slide 19

European Space Agency

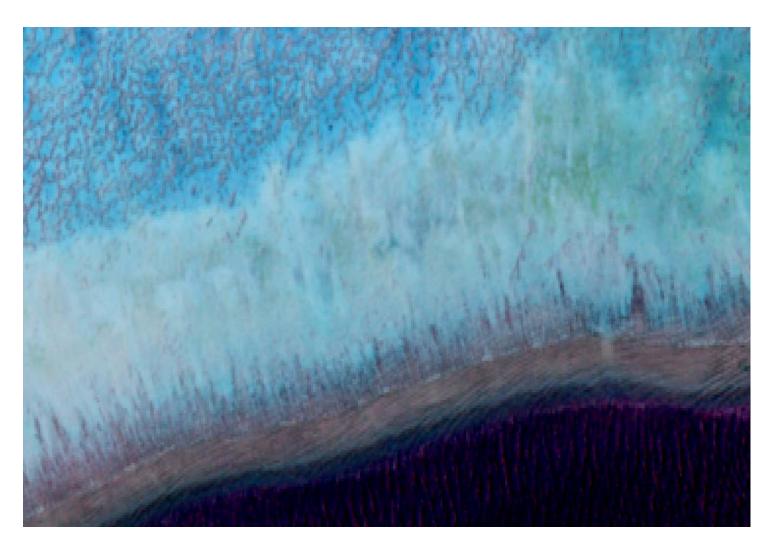
opernicus Water Quality Monitoring: Lake Turkana, **Maximum Chlorophyll Index**

http://www.odermatt-brockmann.ch/sponge/

Contains modified Copernicus Sentinel data [2016]

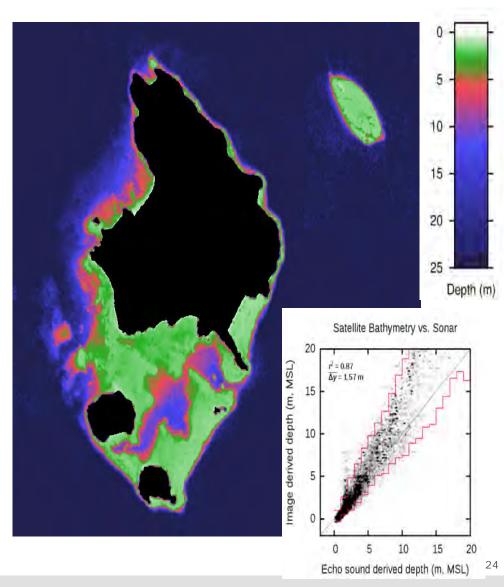


Coral Reefs: Benthic Microalgae Dynamics Wistari Reef, Great Barrier Reef

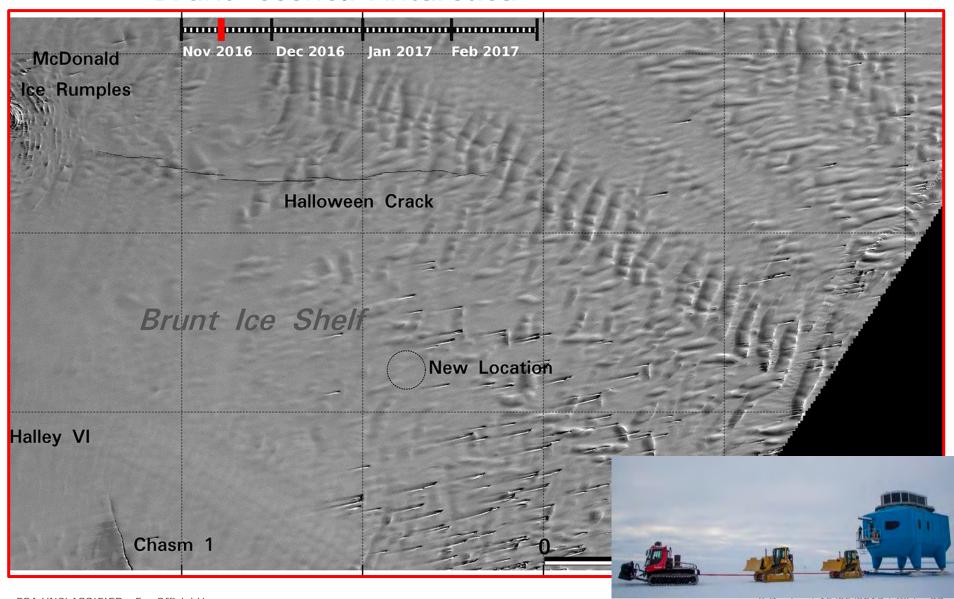

ESA UNCLASSIFIED - For Official Use

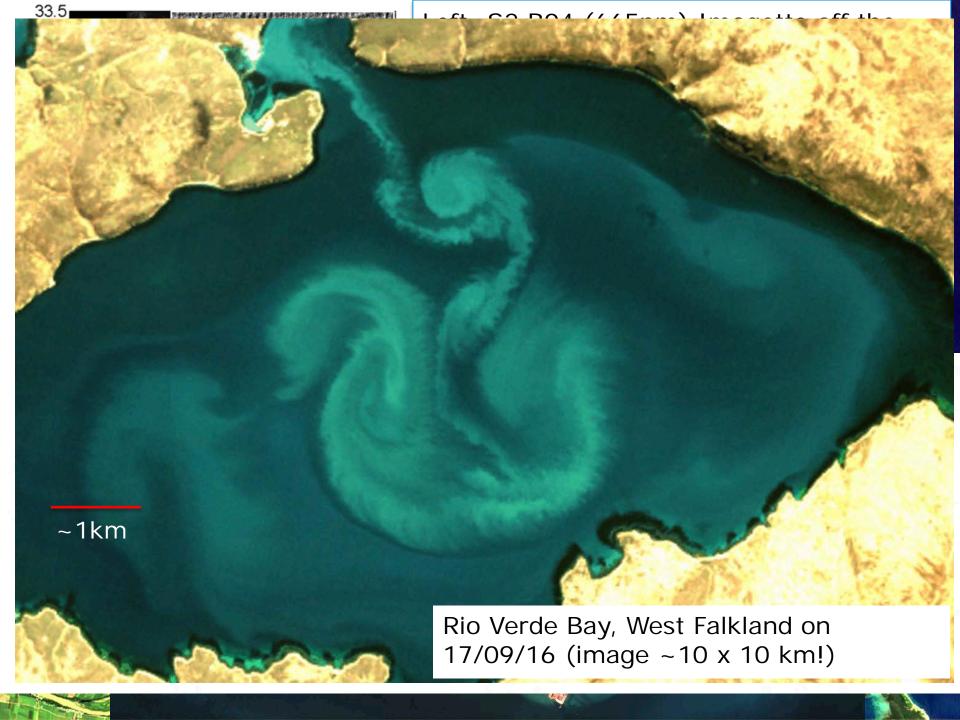
Coral Reefs: Benthic Microalgae Dynamics

30 October 2016

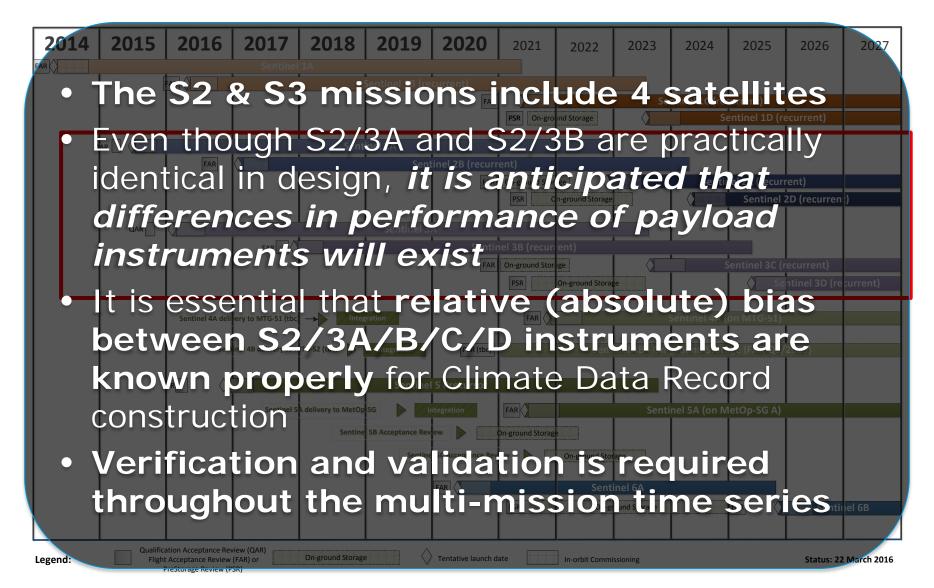


opernicus Coral Reef: Bathymetry Lizard Island, Great Barrier Reef





Relocation of British Antarctic Station Brunt Iceshelf Antarctica


ESA UNCLASSIFIED - For Official Use

The Copernicus Sentinel Deployment Schedule

ESA UNCLASSIFIED - For Official Use

ernicus Fiducial Reference Measurements

- Fiducial Reference Measurements (FRM) are
- the suite of **independent ground measurements** that provide the **maximum** Scientific Utility and Return On Investment for a satellite mission by delivering, to users, the required confidence in data products, in the form of independent validation results and satellite measurement uncertainty estimation, over the duration of the mission.
- The defining mandatory characteristics of an FRM are:
 - a. Have documented evidence of SI traceability via inter-comparison of instruments under operational-like conditions.
 - b. Are **independent** from the satellite SST retrieval process.
 - c. Include an uncertainty budget for all FRM instruments and derived measurements is available and maintained, traceable where appropriate to SI ideally directly through an NMI
 - d. Are collected using measurement protocols and community-wide management practices (measurement, processing, archive, documents etc.) are defined and adhered to.
- FRM are required to determine the on-orbit uncertainty characteristics of satellite measurements via independent validation activities.

ESA UNCLASSIFIED - For Official Use

21 – 23 February 2017 at ESRIN, IT Options for future European satellite OCR vicarious adjustment infrastructure for the Sentinel-3 OLCI and Sentinel-2 MSI A/B/C and D instruments

- 38 attendees
 - USA: 5 from NOAA, Uni. of Miami, NIST Sea-Bird Scientific, NASA GISS
 - Canada: 1 from Dalhousie Uni.
 - Australia: 1 from Uni. Of Western Australia
 - Korea: 1 from KIOST
- EU: 30 from 7 countries
 - ESA, EUMETSAT
 - France: 7 from LOV, ACRI-ST, SOLVO
 - Italy: 7 from JRC, CNR, ISPRA, ESA
 - Estonia: 6 from Tartu Observatory and **Estonian Marine Institute**
 - UK: 4 from NPL and PML
 - Germany: 2 AWI
 - Belgium: 2 from RBINS, European Environment Agency
 - Ireland: 1 Techworks Marine

Comparison of Reference Irradiance and Radiance Sources (3 – 6 April 2017 at NPL, UK)

12 organisations from 9 countries

NPL (UK), pilot TO (EE) JRC (EU) LOV (FR) Satlantic (CA) Cimel (FR) In-situ Marine Optics (AU) CSIRO (AU) NIVA (NO) NFRC-FSF (UK) NOAA (US)



DLR-IMF (DE)

https://frm4soc.org

Indoor / Outdoor

FRM radiometer inter-comparison (8 - 13 May 2017 at TO, Estonia)

13 organisations from 8 countries

ESA

TO (EE), pilot

AWI (DE)

CIMA (PT)

Cimel (FR)

CNR (IT)

HZG (DE)

NPL (UK)

PML (UK)

RBINS (BE)

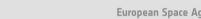
Satlantic (CA)

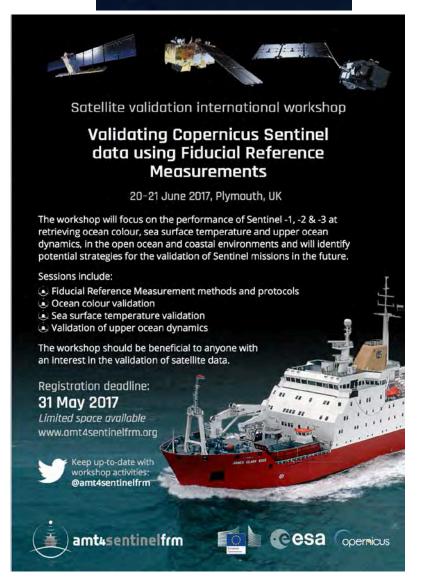
UT (EE)

UVIC (CA)

41 Radiometers calibrated!

Plymouth Marine Laboratory



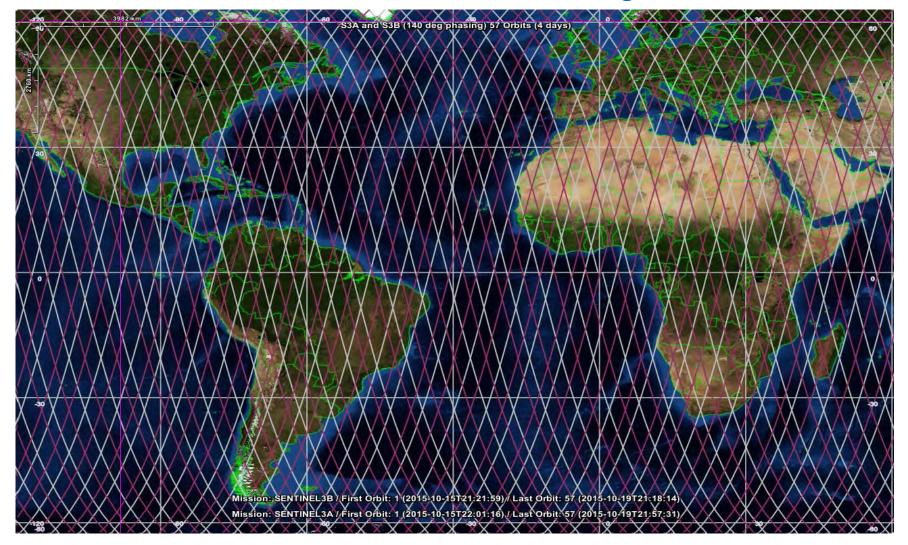


amtasentinelfrm http://amt4sentinelfrm.org/

ESA UNCLASSIFIED - For Official Use

European Space Agency

opernicus Sentinel-3B: status


- All 5 OLCI-B cameras have been refurbished following anomaly last year.
- Test campaign results show radiometric, spectral and geometric performances similar compared to the previous build.
- OLCI-B instrument integration was completed successfully.
- Satellite now in Thermal Vacuum chamber without OLCI FM (OLCI simulator used)
- Launch planned end 2017
- Procurements for the Sentinel-3C and D models has now started
- New 120Deg Orbit phasing and a Tandem mission (flying S3B 20s in time behind S3A during commissioning approved by EC)
- More details of the S3 Mission in S. Mecklenburg's Talk

Operaicus Optimising the Constellation: Sentinel-3B phasing to 140° (instead of 180°) after 4 days

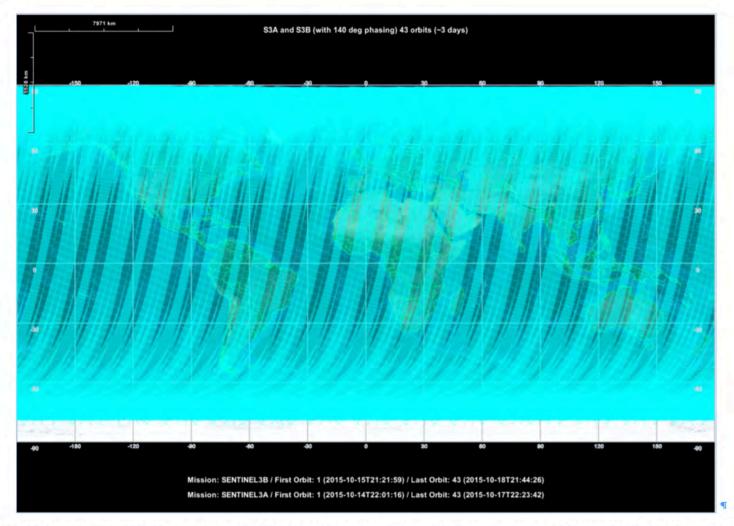
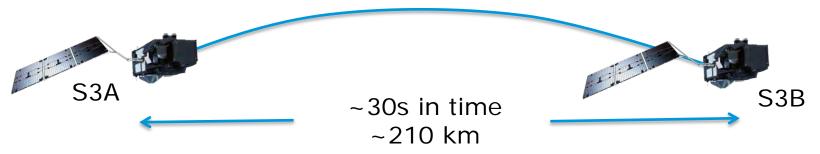
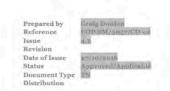



Figure 7. Complete coverage of OLCI after mitigation of sun-glint with S3B set in 140° phasing with S3A is reached after 3 day •

ESA UNCLASSIFIED - For Official Use

Tandem Rationale

A tandem phas between satelli flown during Ph



- At $\sim 30s$, the at negligible level
- At ~30s, more deserts can be
- multiple coincid conditions at al relative calibra
- We can run S3
- We are interest

Scientific Justification for a Tandem mission between Sentienl-3A and Sentinel-3B during the E1 commissioning Phase

Available on request from craig.donlon@esa.int

0 s separation in time 4-5 months will be

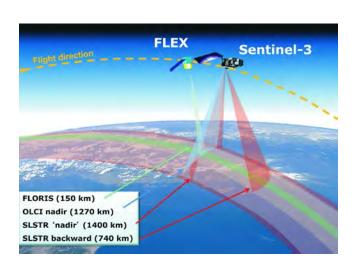
vill be reduced to paring data.

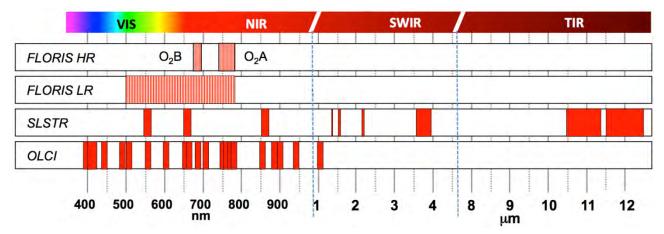
e cloud tops and hot

of atmospheric ower to characterise

modes

andem phase.


ESA UNCLASSIFIED - For Official Use


ESA's EARTH EXPLORER 8 - FLEX

Tandem Mission Concept with Sentinel-3:

- 5-30 sec temporal collocation with OLCI
- ➤ 300 × 300 m² spatial resolution
- > 150 km swath width
- > 500 780 nm spectral coverage
- ➤ 0.3 2 nm spectral sampling intervals

FLEX Poster available in Sessions 1 and 2!

ESA Ocean Training 2017, Porto Portugal 11-15th September 2017

eo science for society

50 places available

Open to European and International PhD, Post grad and Post Doctorate scientists

	Monday	Tuesday	Wednesday	Thursday	Friday
Ocean Synergy Challenge [Mesoscale and sub-mesoscale Structures	Sea Level and Ocean Surface Transport	Wind Waves and Wave/current interaction	Salinity and Marine Inorganic Carbon	Climate Change and Polar Oceans
08:30	Registration	000 m (0)	Lecture 5: Wind waves and wave current interaction from space	Lecture 6: Measuring ocean surface salinity from space	Lecture-8: Polar oceans and Climate change from space
09:00	Official Welcome	Lecture 3: Sea Level and			
09:15	Course introduction	ocean heat content from space			
09:30	Lecture-1:			Interactive	
09:45	Measuring the ocean using	Interactive Lecture 4:	Interactive Lecture 8: How to measure ocean waves from space [1]	Lecture 12: Investigating sea surface salinity from space [1]	Interactive Lecture 16: Understanding the polar oceans from space
10:00	different satellite	What can an ocean altimeter do for			
10:15	synergy	me?			
10:30	Coffee	Coffee	Coffee	Coffee	Coffee
11:00	Interactive			Investigation	Interactive Lecture 17: Climate impact and the polar oceans
11:15	Lecture 1: Exploring the	2 2 41			
11:30	ocean mesoscale and sub-	Interactive			
11:45	mesoscale using thermal and	Lecture 5: Investigating sea	Interactive Lecture 9: How to measure ocean waves from space [2]		
12:00	optical imagery	level and ocean heat content using			
12:15	i Dest	satellite altimeters			
12:30	Lecture-2: Ocean Biology from				
12:45	Space				
13:00	Lunch	Lunch	Lunch	Lunch	Lunch

Apply online now at:

http://oceantrainingcourse2017.esa.int/

ESA UNCLASSIFIED - For Official Use C Donlon | 15/05/2017 | Slide 43

Conclusions

- Successful launch of Sentinel-2B on 7th March 2017 full constellation in place
- All performance of S2A is compliant (or better) than requirements
- S2B commissioning is nearly complete: The IOCR is 15th June 2017 so expect products shortly afterwards.
- The S2 Mission is responding to user needs and evolving to meet those needs eg inclusion of L2A products
- S2 has great potential for marine applications in the coastal zones and projects at ESA are in place (more to come) to drive user uptake in this domain
- Validation activities are well advanced and dedicated projects are in place to develop a culture of FRM validation
- Sentinel-3B Satellite integration well advanced.
- With the inclusion of the C and D models to the fleet of Sentinel-2 and 3 satellites, mission continuity is ensured for at least 25 years from the launch of the first Satellite
- ESA is here to help you deliver the best ocean colour science from space please take a visit to our booth!

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use