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loadings with one loading for each wavelength. Additionally, a vector
of scores associated with each EOF was obtained, which represented
the amplitude of the EOF for each observed Rrs(λ) spectrum.

The EOF analysis of Rrs(λ) spectra showed that the first mode
contained 92.4% of the variance (Fig. 4, top panel), and its shape
closely resembled the mean shape of Rrs(λ) (Fig. 3) indicating that

the variance captured was due to variability in spectral amplitude.
The second mode (Fig. 4, second panel), however, exhibited a shape
not related to spectral amplitude, but rather to an out of phase (i.e.
negatively correlated) behaviour between the blue and red regions
of the spectrum, suggesting a process (or processes) that affects the
short and long wavelength regions of the spectra differently.

In order to focus on changes in spectral shape that are expected
from to result from variability in phytoplankton optical properties,
it was decided to normalise Rrs(λ) to minimise the amplitude
component of spectral variability and permit a more informative
analysis of the factors that drive variability in shape. Rrs(λ) spectra
were normalised by their integral according to:

Rrs λð Þ ¼ Rrs λð Þ
∫700
400Rrs λð Þdλ

ð2Þ

where 〈Rrs(λ)〉 is integral-normalised Rrs(λ) (dimensionless). As can
be seen in Fig. 5, the normalisation procedure substantially reduced
the variability in spectral amplitude from, for example, a factor of
8 to 1.3 at 550 nm. The variability in spectral shape is thus much
easier to discern in Fig. 5 than it is in Fig. 3.

The EOF analysis was then repeated on the normalised spectra and
the first mode (Fig. 6, top panel), which described changes in spectral
shape, was found to be almost identical to the second mode of the
un-normalised spectra (Fig. 4, second panel). Normalisation of the
spectra meant that variability associated with changes in spectral
shape accounted for a much greater proportion of the variance—72.4%
for normalised spectra (Fig. 6, top panel) as compared with 5.1% for
un-normalised spectra (Fig. 4, second panel)—and thereby provided a
more sensitive means to detect variability in AOP spectral shapes
brought about by changes in water constituents. It is important to
note that normalising the spectra made little change to the cumulative
proportion of variance that the first four modes represented—99.6%
for un-normalised spectra (Fig. 4) and 98.3% for normalised spectra
(Fig. 6).

The modes of oscillation in Fig. 6 are interpretable as signatures of
changes in the optical properties of the constituents of the water
column. Mode 1 represents variation in the water's colour, and is likely
the signature of bulk oscillations in biomass concentration. Mode 2
superficially resembles the oscillation in the amplitude of 〈Rrs(λ)〉, but
it does not exhibit the chlorophyll a fluorescence emission peak at
~683 nm captured by mode 1, suggesting that it is not associated with
Chl a. Furthermore, it exhibits an almost exponential shape from 400
to ~555 nm that resembles what might result from light absorbed by
CDOM. This mode may therefore be the signature of changes in the

Fig. 3. Remote sensing reflectance, Rrs(λ), derived from HyperPro measurements
obtained during the period February 2009–March 2010 at the Compass Buoy station.

Fig. 4. Loadings, percent variance and cumulative proportion of variance represented
for modes 1–4 of EOF analysis of Rrs(λ). Fig. 5. Integral-normalised Rrs(λ), 〈Rrs(λ)〉.
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loadings with one loading for each wavelength. Additionally, a vector
of scores associated with each EOF was obtained, which represented
the amplitude of the EOF for each observed Rrs(λ) spectrum.

The EOF analysis of Rrs(λ) spectra showed that the first mode
contained 92.4% of the variance (Fig. 4, top panel), and its shape
closely resembled the mean shape of Rrs(λ) (Fig. 3) indicating that

the variance captured was due to variability in spectral amplitude.
The second mode (Fig. 4, second panel), however, exhibited a shape
not related to spectral amplitude, but rather to an out of phase (i.e.
negatively correlated) behaviour between the blue and red regions
of the spectrum, suggesting a process (or processes) that affects the
short and long wavelength regions of the spectra differently.

In order to focus on changes in spectral shape that are expected
from to result from variability in phytoplankton optical properties,
it was decided to normalise Rrs(λ) to minimise the amplitude
component of spectral variability and permit a more informative
analysis of the factors that drive variability in shape. Rrs(λ) spectra
were normalised by their integral according to:

Rrs λð Þ ¼ Rrs λð Þ
∫700
400Rrs λð Þdλ

ð2Þ

where 〈Rrs(λ)〉 is integral-normalised Rrs(λ) (dimensionless). As can
be seen in Fig. 5, the normalisation procedure substantially reduced
the variability in spectral amplitude from, for example, a factor of
8 to 1.3 at 550 nm. The variability in spectral shape is thus much
easier to discern in Fig. 5 than it is in Fig. 3.

The EOF analysis was then repeated on the normalised spectra and
the first mode (Fig. 6, top panel), which described changes in spectral
shape, was found to be almost identical to the second mode of the
un-normalised spectra (Fig. 4, second panel). Normalisation of the
spectra meant that variability associated with changes in spectral
shape accounted for a much greater proportion of the variance—72.4%
for normalised spectra (Fig. 6, top panel) as compared with 5.1% for
un-normalised spectra (Fig. 4, second panel)—and thereby provided a
more sensitive means to detect variability in AOP spectral shapes
brought about by changes in water constituents. It is important to
note that normalising the spectra made little change to the cumulative
proportion of variance that the first four modes represented—99.6%
for un-normalised spectra (Fig. 4) and 98.3% for normalised spectra
(Fig. 6).

The modes of oscillation in Fig. 6 are interpretable as signatures of
changes in the optical properties of the constituents of the water
column. Mode 1 represents variation in the water's colour, and is likely
the signature of bulk oscillations in biomass concentration. Mode 2
superficially resembles the oscillation in the amplitude of 〈Rrs(λ)〉, but
it does not exhibit the chlorophyll a fluorescence emission peak at
~683 nm captured by mode 1, suggesting that it is not associated with
Chl a. Furthermore, it exhibits an almost exponential shape from 400
to ~555 nm that resembles what might result from light absorbed by
CDOM. This mode may therefore be the signature of changes in the

Fig. 3. Remote sensing reflectance, Rrs(λ), derived from HyperPro measurements
obtained during the period February 2009–March 2010 at the Compass Buoy station.

Fig. 4. Loadings, percent variance and cumulative proportion of variance represented
for modes 1–4 of EOF analysis of Rrs(λ). Fig. 5. Integral-normalised Rrs(λ), 〈Rrs(λ)〉.
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loadings with one loading for each wavelength. Additionally, a vector
of scores associated with each EOF was obtained, which represented
the amplitude of the EOF for each observed Rrs(λ) spectrum.

The EOF analysis of Rrs(λ) spectra showed that the first mode
contained 92.4% of the variance (Fig. 4, top panel), and its shape
closely resembled the mean shape of Rrs(λ) (Fig. 3) indicating that

the variance captured was due to variability in spectral amplitude.
The second mode (Fig. 4, second panel), however, exhibited a shape
not related to spectral amplitude, but rather to an out of phase (i.e.
negatively correlated) behaviour between the blue and red regions
of the spectrum, suggesting a process (or processes) that affects the
short and long wavelength regions of the spectra differently.

In order to focus on changes in spectral shape that are expected
from to result from variability in phytoplankton optical properties,
it was decided to normalise Rrs(λ) to minimise the amplitude
component of spectral variability and permit a more informative
analysis of the factors that drive variability in shape. Rrs(λ) spectra
were normalised by their integral according to:

Rrs λð Þ ¼ Rrs λð Þ
∫700
400Rrs λð Þdλ

ð2Þ

where 〈Rrs(λ)〉 is integral-normalised Rrs(λ) (dimensionless). As can
be seen in Fig. 5, the normalisation procedure substantially reduced
the variability in spectral amplitude from, for example, a factor of
8 to 1.3 at 550 nm. The variability in spectral shape is thus much
easier to discern in Fig. 5 than it is in Fig. 3.

The EOF analysis was then repeated on the normalised spectra and
the first mode (Fig. 6, top panel), which described changes in spectral
shape, was found to be almost identical to the second mode of the
un-normalised spectra (Fig. 4, second panel). Normalisation of the
spectra meant that variability associated with changes in spectral
shape accounted for a much greater proportion of the variance—72.4%
for normalised spectra (Fig. 6, top panel) as compared with 5.1% for
un-normalised spectra (Fig. 4, second panel)—and thereby provided a
more sensitive means to detect variability in AOP spectral shapes
brought about by changes in water constituents. It is important to
note that normalising the spectra made little change to the cumulative
proportion of variance that the first four modes represented—99.6%
for un-normalised spectra (Fig. 4) and 98.3% for normalised spectra
(Fig. 6).

The modes of oscillation in Fig. 6 are interpretable as signatures of
changes in the optical properties of the constituents of the water
column. Mode 1 represents variation in the water's colour, and is likely
the signature of bulk oscillations in biomass concentration. Mode 2
superficially resembles the oscillation in the amplitude of 〈Rrs(λ)〉, but
it does not exhibit the chlorophyll a fluorescence emission peak at
~683 nm captured by mode 1, suggesting that it is not associated with
Chl a. Furthermore, it exhibits an almost exponential shape from 400
to ~555 nm that resembles what might result from light absorbed by
CDOM. This mode may therefore be the signature of changes in the

Fig. 3. Remote sensing reflectance, Rrs(λ), derived from HyperPro measurements
obtained during the period February 2009–March 2010 at the Compass Buoy station.

Fig. 4. Loadings, percent variance and cumulative proportion of variance represented
for modes 1–4 of EOF analysis of Rrs(λ). Fig. 5. Integral-normalised Rrs(λ), 〈Rrs(λ)〉.
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Will	these	approaches	be	adequate	for	extracCng	
informaCon	from	a	new	era	of	hyperspectral	data?
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• Likely	not!	
• Hyperspectral	data	will	be	collected	from	satellites	and	
an	increasing	array	of	other	pla=orms

Some	thoughts

• Era	of	‘big	data’	or	‘The	
Fourth	Paradigm’

The	Fourth	Paradigm:	Data-Intensive	Scien'fic	Discovery	

[Hey	et	al.,	2009].	Based	on	the	work	of	Jim	Gary,	computer	
scien0st	

• Need	more	sophis0cated	
approaches	to	fully	exploit	
hyperspectral	&	other	
contextual	Earth	system	
data
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• Currently	we	are	not	certain	how	hyperspectral	will	improve	
our	knowledge	about	the	ocean	

• THIS	IS	OK!!	
• Machine	learning	and	sta0s0cs	can	help	us	discover	
unknown	proper0es	or	pa&erns	contained	in	data	

• Hyperspectral	isn't	just	mul0spectral	with	more	bands!	
• Ocean	colour	signals	➙	rela0onships	with	the	Earth	system	
• This	is	what	we’re	striving	for!

Some	thoughts

© 2013. American Geophysical Union. All Rights Reserved.
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More than ever in the history of science, 
researchers have at their fingertips an 
unprecedented wealth of data from continu-
ously orbiting satellites, weather monitoring 
instruments, ecological observatories, seismic 
stations, moored buoys, floats, and even 
model simulations and forecasts. With just an 
internet connection, scientists and engineers 
can access atmospheric and oceanic gridded 
data and time series observations, seismo-
graphs from around the world,  minute-  by- 
 minute conditions of the near-Earth space 
environment, and other data streams that 
provide information on events across local, 
regional, and global scales. These data sets 
have become essential for monitoring and 
understanding the associated impacts of 
geological and environmental phenomena 
on society.

This increasing amount of data has led 
us into the era of “big data,” or the “fourth 
paradigm,” as described in essays based on 
Jim Gray’s vision of data science in the book 
The Fourth Paradigm:  Data-  Intensive Scientific 
Discovery [Hey et al., 2009]. Big data, how-
ever, brings an inherent problem: How can 
researchers extract usable information from 
such overwhelming quantities of numbers 
and variables?

To help better understand, describe, and 
model data, scientists need an effective 
means of analyzing massive amounts of it. 
Doing this efficiently involves, at its heart, the 
use of computer programs, machine learning, 
and statistical techniques that view and 
analyze Earth and environmental events as 
“objects.”

Object-Oriented Analysis

An object can be thought of as an iden-
tified item, event, or instance with distinct 

attributes and statistics representing the 
existence of the entity in space and/or time—
for example, a storm, an earthquake, an 
ecological region, or a sea surface tempera-
ture anomaly. The attributes and statistics 
associated with these objects can be 
analyzed using statistical modeling algo-
rithms to identify structural relationships 
between different characteristics, as well as 
time periods corresponding to different 
physical systems and phenomena interac-
tions, leading to enhanced knowledge of 
what trends the data hold.

Specifically,  object-  oriented data analysis 
can be thought of as the study of the statistics 
of populations of objects. The analysis can 
include defining objects contained within 
digital images or photographs, gridded data 
sets, and animations, which allow for the 
objects to be analyzed over time and space.

If such algorithms are run in a computer 
environment designed to home in on 

characteristics of objects or events of interest, 
then the data can be crunched even more 
efficiently, allowing insights from big data to 
be revealed at a quicker pace. Such machine 
learning evolved from artificial intelligence 
research and focuses on developing models 
that are based on the behaviors and charac-
teristics of empirical data. Capturing the 
behaviors and characteristics from data and 
determining their underlying probability 
distributions can provide new knowledge 
regarding the object or characteristic of 
interest. Typically, the properties or “true” 
underlying probability distributions of the 
observed variable of interest are not explicitly 
known. However, by seeking to define or 
describe these underlying probability 
distributions, data mining can help scientists 
learn or discover unknown properties and 
patterns contained in the data. This is 
particularly useful with complex systems and 
data sets.

The  object-  oriented approach has been 
widely used in various Earth and environ-
mental science fields, from researching 
geographical terrain morphology [Mitasova 
et al., 2012] to determining better methods for 
verifying the forecasts of numerical weather 
prediction (NWP) models [Davis et al., 2006a, 
2006b; Mittermaier and Bullock, 2013] and 
tornado forecasting [Clark et al., 2012]. The 

BY S. SELLARS, P. NGUYEN, W. CHU, X. GAO, 
K. HSU, AND S. SOROOSHIAN

Fig. 1. A connected four-dimensional atmospheric river, or “precipitation object,” extracted from 
the PostgreSQL database. The atmospheric river originated in the eastern Pacific and affected the 
western United States from 28 to 30 December 2005.

Sellars	et	al.	(2013),	EOS,	94(32),	277-288	
Case	study	of	object-oriented	analysis	of	precipita0on
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• Gather	ideas	from	the	community	
• Formulate	into	specific	recommenda0ons	for	space	
agencies	

Remember:	this	is	an	opportunity	for	us	to	voice	our	

collec've	opinion	

• What	avenues	should	we	inves0gate?	
• What	needs	to	be	done	to	facilitate	these	inves0ga0ons	
and,	ul0mately,	advance	our	field?	

• Let’s	NOT	get	stuck	in	a	discussion	of	what	we	already	

know

Our	ac%on	items
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• Think	outside	the	box	(data	cube!)	
• Be	open	minded	-	are	there	overlaps/collabora0on	
opportuni0es	you	may	not	have	previously	considered?	
- e.g.	I’m	currently	working	with	computer	scien0sts	who	
study	medical	imaging!

Our	challenge
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And	go…


