

Hyperspectral radiometric device for accurate measurements of water leaving radiance from autonomous platforms for satellite vicarious calibrations (aka HYPERNAV) NASA sponsored project NX14AP86G

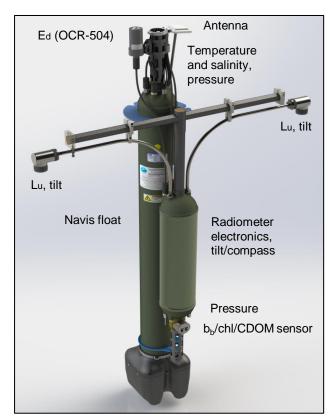
PI: Andrew Barnard, Sea-Bird Scientific

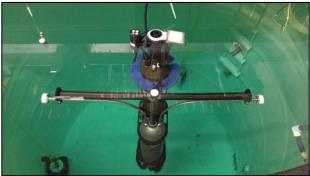
Co-PI: Emmanuel Boss, University of Maine

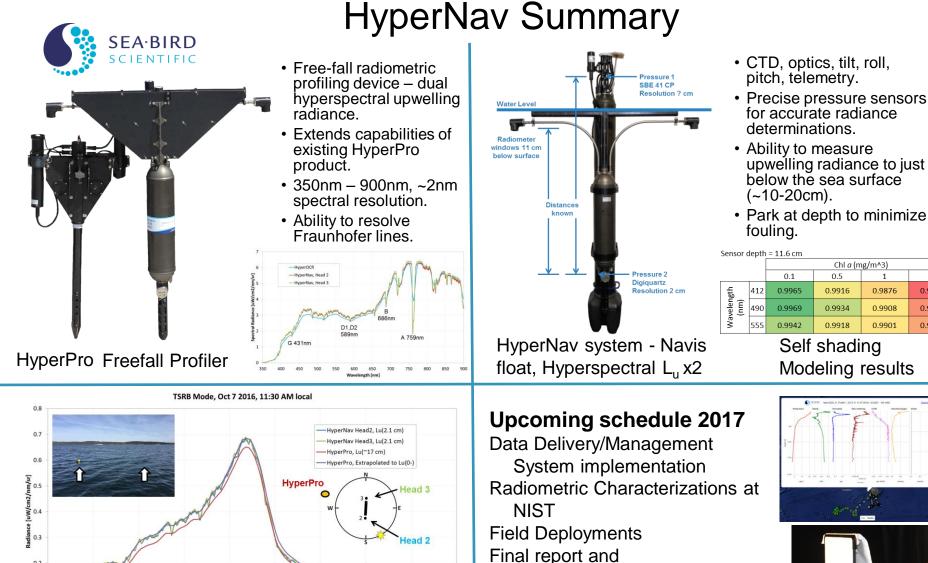
Ronnie Van Dommelen, Keith Brown, Marlon Lewis, Burkhard Plache, Jamie Hutchins, Scott Feener, Joel Reiter, Daryl Carlson, Alex Derr, Nils Haentjens

2017 International Ocean Colour Science Meeting, Lisbon Portugal, 15 May 2017

THE UNIVERSITY OF


Project Overview


Goals


- Next-generation hyperspectral radiometric sensors for calibration/validation.
- Utilize autonomous floats as a platform to collect hyperspectral radiometric to minimize uncertainty.
- Develop an end-to-end system/strategy for new ocean-color satellite calibration – including float deployment, radiometric data quality assurance, data delivery and satellite intercomparison.

HyperNav autonomous float system advantages

- Risk reduction approach to the vicarious calibration program for PACE and other missions.
- Deployment floats at the start of a satellite mission Rapid characterization of in flight satellite radiometer.
- Provide radiometric measurements across a broader range of solar angles and geographic regions, to assess the satellite dependencies on out-of-band response, BDRF, etc.
- Augments other moored cal/val sites throughout satellite lifetimes, enables rapid collection of vicarious calibration data.

700

750

800

0.2

0.1

350

500

Wavelength [nm] Surface spectra for Lu sensors recommendations (Sept. 2017)

5

0.9691

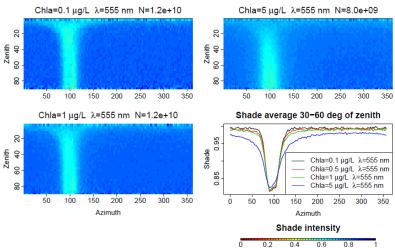
0.9758

0.9795

 $TRL_{in} = 3$ $TRL_{current} = 6$ $TRL_{goal} = 7$

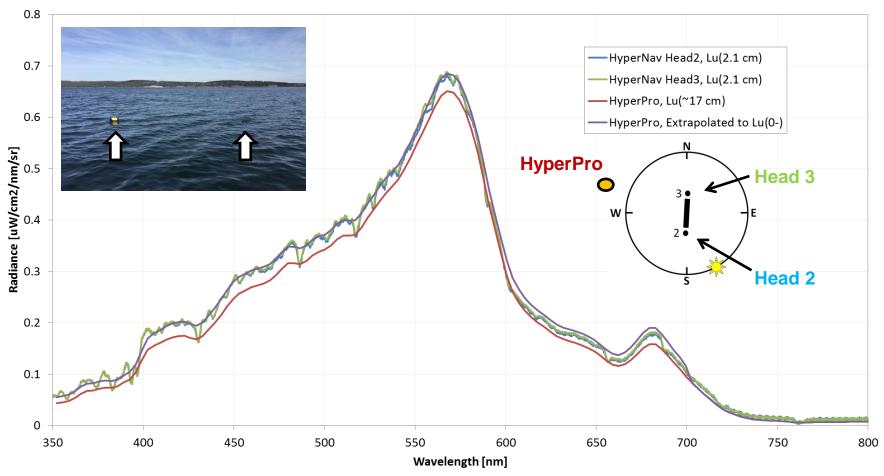
SEA-BIRD Requirements Matrix

REQUIREMENT	CAPABILITY			
Spectral Range 350-900 nm	350 to >900 nm			
Resolution < 3 nm	<=2.2nm (350-800nm), <=2.35nm (800-900nm)			
Radiometric Uncertainty < 4% in blue-green	< 4% in the blue-green. TBD for red. Uncertainty due to extrapolation from L(z) to L(0).			
Radiometric Stability O(1%) per Deployment	System will park at 1000 m depth, inhibiting biofouling.			
Autonomous Field Operation	Excellent history of long-term float deployment. Float scheduling can be updated after deployment.			
Fully Lab and Field Characterized	Radiometers will be fully characterized (stray light, temp, linearity, etc) Calibrated with NIST-calibrated lamps.			
Fully Autonomous Data Delivery to Enable the NASA Mission Science.	A full end-to-end system with automated Prosoft processing scripts.			



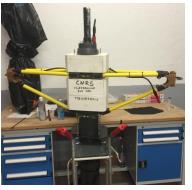
Design of Radiometric System

- 1. Dual heads -> sun-side radiometer & intercomparison.
- 2. Heads on arms reduce self-shading.
- 3. Right-angle design -> near surface.
- 4. Reduced errors in extrapolation to Lu(0-).
- 5. Tilt sensors for alignment and to monitor position.
- 6. Shutters for collecting darks.
- 7. Depolarizer to remove uncertainty in the fore optics.
- 8. 2.3 nm nominal resolution, 350-900 nm


Supercomputer simulations of shading vs zenith, azimuth, depth, wavelength, chl-a using SimulO software by Edouard Leymarie (LOV)

TSRB Mode, Oct 7 2016, 11:30 AM local

HyperPro extrapolation to Lu(0-) uses spectral k estimation (Austin Petzold 1981 & Morel 2001)


HYPERNAV System Overview

SENSOR	LOCATION	PURPOSE		
OCR-504	Top of Navis mast	(380nm, 490nm, 590nm, PAR) Validation, sky conditions		
MCOMS	Base of radiometer	(Chl, 700 BB, FDOM) Data validation		
Pressure	Base of radiometer	High accuracy & resolution depth for surface extrapolations		
Temperature and Salinity	Top of Navis mast	For use with pressure for depth calculation		
Tilt/Compass	Radiometer body	Quality control, orientation to the sun		
Tilt	Radiometer heads	Head alignment and monitoring		

Key Aspects:

- Dual independent radiometers relative drift
- Lu very close to surface
- Hyperspectral
- Improved pressure accuracy
- Minimization of self shading
- Ability to extend at surface acquisition time
- Tilt data utilization for power saving

Courtesy of LOV, E. Leymarie

SEA-BIRD Uncertainties Matrix

SOURCE	TARGET %@412nm	TARGET %@443nm	TARGET %@500nm	TARGET %@550nm	TARGET %@665nm	METHOD OF VALIDATION	MITIGATION
Calibration							
Irradiance standard	1.04	0.94	0.84	0.78	0.68	Provided by NIST	Use NIST calibrated lamp
Reflectance target	1.8	1.8	1.8	1.8	1.8	Provided by manufacturer	Use corrections for 0-45deg
Reproducibility	1.6	1.6	1.6	1.6	1.5	Repeated calibrations	Careful lab procedures
Instrument							
Immersion factor	0.3	0.3	0.3	0.3	0.3	Theory and experiment	Careful lab procedures
Linearity	0.3	0.3	0.3	0.3	0.3	NIST beam conjoiner	Characterize and correct
Stray light	0.10	0.09	0.06	0.04	0.09	NIST laser scanning	Characterize and correct
Thermal effects	0.01	0.00	0.01	0.02	0.07	At cal station over 4-30 C	Characterize and correct
Polarization effects	0.5	0.4	0.1	0.1	0.5	Int. sphere and polarizer	Depolarizer
Wavelength accuracy	0.4	0.4	0.4	0.4	0.4	Provided by mfr., verified w/ Fraunhofer lines	Quality control on spectrometers
Field							
Wave focusing	1.0	1.0	1.0	1.0	1.0	Field measurements	High frame rate at surface
Self-shading	0.5	0.5	0.5	0.5	0.5	Monte Carlo	Model corrections
Tilt effects	0.5	0.5	0.5	0.5	0.5	Tilt sensors in heads	Only send data w/ good tilts
Surface extrapolation	0.65	0.65	0.65	1.13	4.84	Modelling	High accuracy pressure
Biofouling (6 mnths)	0.5	0.5	0.5	0.5	0.5	Retrieval of floats, post cal	Park in aphotic zone
Total	3.1	3.1	3.0	3.1	5.6		

Measured

Rough estimate, need improved estimate


Estimated, to be measured

Next Steps

Continued Radiometric Characterizations

- Immersion Coefficients Lab Experiments (Zibordi 2005) Calculate using T and S measured by Navis float
- Thermal Lab Experiments (correction function)
- **Spectral Stray Light** NIST (correction function)
- Linearity Lab & NIST (Goal: accuracy to <0.1%)

Continued Float Field Testing

- Testing at MOBY, Hawaii
- Behavior at the surface data transmission
- Behavior during transmission, bladder inflated
- Real data transfer (end-to-end system operation)
- Post calibration (recovery) to document stability
- Quantify uncertainty due to deployment biofouling, etc.

Thank You

