

Advancing Global Ocean Colour Observations

Ocean Colour Vicarious Calibration Community requirements for future infrastructures

IOCS 2017 - Breakout Workshop#3

Part II: Discussion on community requirements for any future SVC programme

High level scientific and technical requirements

15:05 – 15:25 Approach to define requirements (uncertainty, stability)
15:25 – 15:45 Requirements on the SVC process and site
15:45 – 16:00 Sources of uncertainty and example of quantified budget

What approach to define requirements?

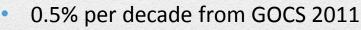
Requirements on the SVC infrastructure are driven by the **uncertainty budget of the gains (e.g. to reach 0.5% TOA)**

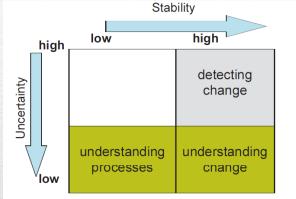
- Requirements are **not directly** defined by applications
- Existing infrastructures provide guidance

Justification for the gain uncertainty (e.g. 0.5% TOA) are driven by requirements on OC products:

- Open ocean, climate applications: 5% on Lw in the blue
- **Coastal applications**: unknown. Effort should focus on AC

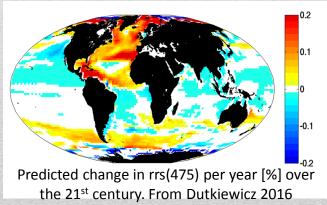
Focus on **System** Vicarious Calibration and on **standard** atmospheric correction (Gordon & Wang)


$$\frac{u(L_w^{\overline{cal}})}{L_w^{\overline{cal}}} = u(\bar{g}) / \left(\frac{t_g t_{up} L_w^{\overline{cal}}}{L_t}\right) \rightarrow 5\% \text{ for } L_w \text{ with } tL_w / L_t = 10\% \text{ requires } u(\bar{g}) = 0.5\%$$


What quality required in OCR?

- **Commonly accepted radiometric uncertainty requirement** for CDRs: 5% (k=1) in the blue-green for open ocean (Gordon 1987, GCOS 2011)
- Long-term stability is key attribute for CDRs, but which requirement on stability?

- 1% from Ohring et al. 2004: "somewhat arbitrary" by simple rule of "1/5"
- Predicted change from numerical model (S.
 Dutkiewicz): 1% per decade for most of the ocean



Uncertainty and stability requirement for CDR. From Ohring et al. 2004

What metric to assess stability?

- Ohring 2004: Stability is measured by the maximum excursion of the short-term-average measured value of a variable under identical conditions over a decade
- Zibordi et al. 2015: $(\sigma_{\bar{g}}/\bar{g})/\sqrt{N_y}$

What requirements on the SVC process?

What justification in the Level-1 calibration for one unique $\overline{g}(\lambda)$?

- Characterisation and monitoring of sensor SRF (including out-of-band)
- Correction for ageing. Use of lunar or on-board device for verification.
- Across-track relative calibration. E.g. OLCI on-board diffuser and BRDF characterisation; what for scanner?
- Non-linearity correction

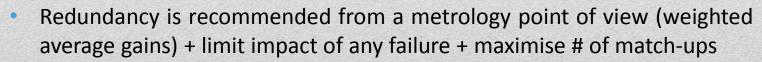
What requirement on the L_w^t in the VIS, in terms of SVC process?

Choice of water type (meso/oligo) only driven by the uncertainty budget

 $\sigma_{g} = \sqrt{\left(\frac{\sigma_{L_{wN}^{t}}}{L_{wN}^{t}}\right)^{2} + \left(\frac{\sigma_{C_{Q}}}{C_{Q}}\right)^{2} \frac{t_{g} t \mu_{s} C_{s} C_{Q} L_{wN}^{t}}{L_{t}}}{L_{t}} \quad \begin{array}{l} \text{Mesotrophic waters may minimize } L_{w}^{t}/L_{t} \text{ but increase } \sigma_{L_{w}^{t}} \text{ and } \sigma_{C_{Q}} \end{array}$

• Calibration in radiance or reflectance: use of L_{wN}^t or $L_{wN}^t/E_s^t * F_0$?

How to evaluate various SVC options? Assess global impact of SVC?


Need high-quality validation dataset (Fiducial Reference Measurements)

What requirements at the SVC site?

• Assuming a low uncertainty in L_w^t is achieved (cf. full unc. budget):

- **Temporal stability?** An ideal external calibration source is one that is nearly constant in time and able to be viewed from different orbit configurations (Ohring 2004)
- Spatial homogeneity? To be assess by in situ measurements
- Characterisation of water IOPs? Depth-extrapolation, BRDF correction
- What atmospheric measurement (used for site selection & QC)?
 - Need characterisation by dedicated space mission for aerosol (not OC mission) + field measurement (LIDAR, AERONET) at least during one year
 - During operation, monthly measurement of AOT(λ)
- Can multiple sites be used? What requirement on the "super-site"?

 Requirements: strict equivalence in terms of uncertainty, traceability, protocols, observation conditions. Statistical proof of equivalence of gains

Sources of uncertainty

Completeness of the uncertainty sources?

	OC-VCAL ID	Uncertainty source				
	In situ Lw measurement					
	OC-VCAL-RD-14	Spectral resolution				
In situ radiometer (Lw)	OC-VCAL-RD-15	Spectral calibration				
	OC-VCAL-RD-16	Stray-light				
	OC-VCAL-RD-17	Radiometric calibration & stability				
	OC-VCAL-RD-18	Angular response				
	OC-VCAL-RD-19	Immersion factor				
	OC-VCAL-RD-20	Thermal stability				
	OC-VCAL-RD-21	Dark current				
	OC-VCAL-RD-22	Polarisation sensivity				
	OC-VCAL-RD-23	Non-linearity response				
	OC-VCAL-RD-24	Noise characterisation				
	OC-VCAL-RD-25	Environ. conditions (like-to-like rule)				
	OC-VCAL-RD-26	Shading				
	OC-VCAL-RD-27	BRDF				
	OC-VCAL-RD-28	Depth-extrapolation				
	OC-VCAL-RD-29	Surface propagation				
	OC-VCAL-RD-30	Data reduction				
		Other effects				
	Total uncertainty on in situ Lw					
	In situ Lw post-processing and match-up					
Lw post-processing and	OC-VCAL-RD-39 Spectral integration to satellite SRF	Spectral integration to satellite SRF				
match-up	OC-VCAL-RD-40	BRDF correction to satellite geometry				
	OC-VCAL-RD-41-42-43	Match-up process				
	Total uncertainty on post-processed in situ Lw for match-up					
Gain computation	SVC gains					
	OC-VCAL-RD-44	Individual gains (Eq. 23)				
Guin computation	OC-VCAL-RD-44	Averaging (Eq. 22)				

Uncertainty budget - Example

Examples to be discussed

• Random and systematic components in the averaging: $\sigma_{\bar{g}}^2$

$$= \left(\frac{\sigma_g^{rand}}{\sqrt{N}}\right)^2 + \left(\sigma_g^{syst}\right)^2$$

OC-VCAL ID	Uncertainty source	rel_u	rel_unc(400)		rel_unc(412)		rel_unc(443)	
OC-VCAL ID	Uncertainty source	rand.	syst	rand.	syst	rand.	syst	
	In situ Lw measurement							
OC-VCAL-RD-14	Spectral resolution		0.50%		0.50%		0.50%	
OC-VCAL-RD-15	Spectral calibration		0.10%		0.10%		0.10%	
OC-VCAL-RD-16	Stray-light		0.75%		0.75%		0.75%	
OC-VCAL-RD-17	Radiometric calibration & stability		2.00%		2.00%		2.00%	
OC-VCAL-RD-18	Angular response							
OC-VCAL-RD-19	Immersion factor	0.05%		0.05%		0.05%		
OC-VCAL-RD-20	Thermal stability	0.30%		0.30%		0.30%		
OC-VCAL-RD-21	Dark current							
OC-VCAL-RD-22	Polarisation sensivity	0.20%		0.20%		0.20%		
OC-VCAL-RD-23	Non-linearity response		0.10%		0.10%		0.10%	
OC-VCAL-RD-24	Noise characterisation							
OC-VCAL-RD-25	Environ. conditions (like-to-like rule)	0.50%		0.50%		0.50%		
OC-VCAL-RD-26	Shading		1.00%		1.00%		1.00%	
OC-VCAL-RD-27	BRDF	0.30%		0.30%		0.30%		
OC-VCAL-RD-28	Depth-extrapolation	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	
OC-VCAL-RD-29	Surface propagation	0.25%		0.25%		0.25%		
OC-VCAL-RD-30	Data reduction	3.00%		3.00%		3.00%		
	Other effects							
Total uncertainty on in situ Lw		3.25%	2.61%	3.25%	2.61%	3.25%	2.61%	
In si	tu Lw post-processing and match-up							
OC-VCAL-RD-39	Spectral integration to satellite SRF		0.20%		0.20%		0.20%	
OC-VCAL-RD-40	BRDF correction to satellite geometry	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	
OC-VCAL-RD-41-42-43	Match-up process	5.00%		5.00%		5.00%		
Total uncertainty on post-processed in situ Lw for match-up		6.04%	2.81%	6.04%	2.81%	6.04%	2.81%	
	SVC gains							
OC-VCAL-RD-44	Individual gains (Eq. 23)	0.30%	0.14%	0.30%	0.14%	0.42%	0.20%	
OC-VCAL-RD-44	Averaging (Eq. 22)	0.04%	0.14%	0.04%	0.14%	0.06%	0.20%	
Total uncertainty on mission average gain		0.1	0.15%		0.15%		0.21%	

In this example: $\frac{t_g t C_Q L_w^t}{L_t} = 5\% \text{ at } 400, 412$ = 7% at 443

Operational requirements

16:00 – 16:10 Field operation and maintenance
16:10 – 16:20 Data access and timelines
16:20 – 16:30 Service operation & science

Field operation & maintenance

What rotation?

- Frequency of rotation of 4 to 6 months (max)
- Maybe limited to some component of the structure
- Continuity between deployment

What routine maintenance?

Divers for cleaning and checking anomalous measurements

What autonomous field operation?

- Store all measured data (optical + platform + environmental)
- Continuous transmission to the lab

Data access and timelines

What access?

- Data publicly and freely available on a website
- Documentation on measurement protocols, field operation, quality level
- Raw data, Lw data, history of calibration
- Automated graph
- Open source code to process raw data to Lw
- Rigorous version management system
- Levels of data quality (cf. AERONET-OC)
- Different levels of uncertainty depending on levels of data quality
- Sampling strategy programmed according to LEO/GEO acquisition

What latency?

- For early phase of mission: quick delivery (one week)
- With reduced quality for NRT monitoring: daily or weekly
- With highest quality for SVC (after post-calibration): after several

Service operation & science

What type of operation is required?

- **Operational component** for SVC. For Copernicus: rely on Service Level Agreement (SLA)
- **Evolutionary and science component**. Research activity possibly funded by other programmes
- What requirements to run a sustainable SVC service?
 - Service aligned on the mission lifetime (e.g. Copernicus)

- Long-term funding. Cost driven by the characterisation, calibration and maintenance, not the equipment.
- Contingency funding in case of emergency
- Sustainable team with demonstrated experience, training, redundancy of PI
- Joint development and operation with a NMI

Programmatic steps and international activities

16:30 – 16:40 International harmonisation16:40 – 16:50 Programmatic steps

International harmonisation

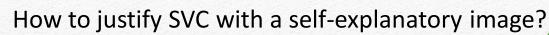
- What could be the required actions for international harmonisation?
 - Link with CEOS and IOCCG, in particular INSITU-OCR
 - Create an IOCCG task force and or Working Group
 - Harmonisation in infrastructure? Intercomparison in Lu measurement with a dedicated transfer instrument (with similar radiometric quality)
 - Harmonised protocols
 - Consistent uncertainty budget assessment (metrology)
 - Data and code sharing
 - Training

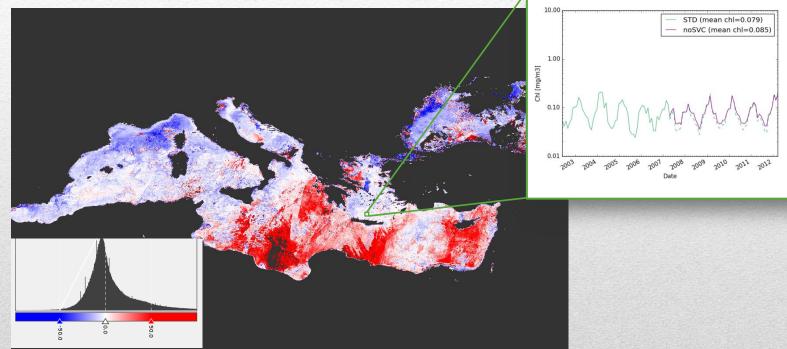
Programmatic steps

In US: next steps after the ROSES call?

In Asia and Oceania:

- Plans for GOCI-II (KIOST)?
- Plans for the Kavaratti buoy in Arabian Sea (ISRO)?
- Buoy off Australia?
- In Europe:
 - Conclusions of FRM4SOC workshop:
 - Two sites in Europe, including BOUSSOLE
 - Long-term investment is critical (initial purchase and installation but also adequate funding for on-going operations in terms of updates/ upgrades, maintenance, and consistent staffing that develops and retains expertise
 - What should be the next steps towards a SVC programme?
 - Step1: Scientific, technical and operational requirements (EUMETSAT report)
 - Step2: Preliminary design, project plan and costing
 - Step 3: Technical definition, specifications, detailed design
 - Step 4: Development, testing and demonstration in the field
 - Step 5: Operation




Conclusion

Message to decision-makers

Impact of vicarious calibration on chlorophyll-a concentration, as measured by MERIS over the Med Sea in April 2008. The relative change (in %) is due to disabling vicarious calibration.

Coordinated message to IOCS

- Goal: identify ONE highest priority for SVC, captured in a single sentence, to be discussed during the final IOCS Q&A session with space agencies
- Suggestion:

Main priority for operational SVC is to ensure sustainable resources (people and infrastructure) along the complete lifetime of current and future OC missions

