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What is PACE?

aerosol optical thickness

ocean chlorophyll
normalized land vegetation index

Broadly speaking, PACE has two fundamental science goals:

(1) Extend key systematic ocean color, aerosol, & cloud climate data records

(2) Address new & emerging science questions using its advanced capabilities

And so much more ...

PACE science objectives are defined in the PACE SDT Report (2012)
cloud fraction




" Mission Architecture, Cost, and Schedule

Mission Characteristics

. Hyperspectral UV-Vis-NIR ocean color instrument with discrete SWIR
bands & a possible multi-angle polarimeter

. 2-day global coverage to solar & sensor zenith angles of 75° & 60°

. Sun-synchronous, polar orbit with local Equatorial crossing of ~13:00

. 675-km altitude and 98° inclination

. Class C (limited redundancy) for 3-yrs of operations & 10-yrs of fuel

«  $805M Design-to-Cost (cost-capped)
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Current Status of PACE

President’s “Skinny Budget” for FY 2018 recommended
cancelling PACE and several other Earth Science Missions

Congress still to act on the FY 2018 budget

Direction from Goddard and NASA Mngmt has been
consistent: PACE Project should proceed as planned

2017 budget approved in early May provides $90M for
PACE through Sept. 30,

PACE is on track with all Phase B activities
Official KDP-B review is scheduled for June 1st
PACE Applications Plan almost finished

PACE project remains optimistic

— Continued support from the community and public helps
Immensely — THANK YOU!!!
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A The step from multi-spectral radiometry to spectroscopy is
not an incremental one — it's a quantum leap

Normalized Light Absorption

Cannot distinguish phytoplankton community composition with a small

number of bands

MODIS bands VS Hyperspectral
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Wavelength (nm)

Why not just add more bands
to a conventional instrument
design?

There are 1000s of
phytoplankton, each with
different absorption spectra;
only an instrument that sees
all wavelengths offers an
opportunity to truly monitor
ecosystems, manage
fisheries, identify and
guantify HABs, and
understand the global
carbon cycle
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/x OCl atmospheric improvements over heritage

-

VIIRS RGB + OMPS Aerosol Index

PACE bands

" VIIRS bands 9

Higher spatial
resolution than many
heritage products

UV + oxygen-A bands
to estimate aerosol
concentrations &
absorption magnitudes,
not just an index

Two 2-um bands improve
retrievals of cloud
thermodynamic phase

From Coddington et al.
2016, in preparation.
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/. What would a multi-angle polarimeter add to PACE? NQSA

e Unsurpassed aerosol and cloud measurements, including
aerosol characterization to climate-relevant accuracy

* Improved characterization of aerosol absorption and vertical
profile, which will also benefit ocean color atmospheric
correction

« Additional data products (e.g. wind speed) for use in ocean
color data product generation

 New and advanced polarization-based ocean color data
products (e.g., marine particle sizes)

Usefulness of planned 3MI on ESA missions to assist with OCI

atmospheric correction/retrievals is limited because of differences in

spatial and temporal sampling.

* Planned 3MI instruments will fly on a polar orbiter with a 09:30 equator
crossing time with 824 km orbital altitude... PACE will have an equator
crossing time close to 13:00 and a 675 km orbital altitude.
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/.~ What about High Spatial Resolution Capability? NQSA

PACE Project investigated ~50 m to 500 m spatial capability
— Finer spatial resolution on OCI — Not Technically Feasible

— Purchase/build a coastal camera — Too expensive under cost-cap
CSA (with NRL) offered to contribute COCI to PACE

— ~100 m spatial resolution; 240 km swath; 3-day revisit capable

— Hyperspectral UV-Vis-NIR; 5 nm bands; high SNR; 3 SWIR bands
PACE Project worked with CSA and NRL to enable this

— ldentified an “ad hoc science team” and convened a workshop in June
2016 with CSA and NRL Users and Science Team, conferred with
PACE ST, developed a white paper describing science and
application benefits

— Shared technical specifications to determine feasibility
— Provided NASA HQ with the white paper and cost estimate for
accommodating COCI on PACE (2-axis gimbal, I&T, SDS, science ...)

« NASA HQ did not approve funding to accommodate COCI
e CSA continues to seek a host for COCI
e CSA continues COCI instrument development
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PACE OCI: a quantum leap

What makes OCI more advanced relative to prior ocean color instruments?

PACE OCI will be the first ever to include all of the following:

2-day global coverage at 1-km
hyperspectral radiometry from the ultraviolet to near-infrared
(350-885 nm); complete downlink of 5 nm spectral resolution data
e Spectral oversampling - overlapping 5 nm bands (1.25 nm steps)
 Goal to extend to 320 nm (ozone)
6 SWIR bands (0.94, 1.25, 1.38, 1.61, 2.13, 2.26 um)
e considering a 1040 nm band
>115 discrete spectral bands
High SNRs (esp. UV-Blue region)
a single science detector to inhibit image striping
Total calibrated instrument artifacts < 0.5% at top-of-atmosphere
semi-monthly lunar calibration + on-board solar difftuser mechanisms
fore / aft tilt to avoid Sun glint

Ocean Leaving 20% or 0.004: 350-395 nm
Reflectance 5% or 0.001: 400-600 nm

Accuracy 10% or 0.0005: 600-800 nm

14




AN OCI UV-VIS-NIR Radiometric Precision Requirement

OCI UV-VIS-NIR SNR Requirement
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N PACE Data Products

Standard OCI Ocean data products

Spectral ocean water-leaving reflectances
Chlorophyll-a

Inherent Optical Properties (a's & b’s)
PAR

Diffuse attenuation coefficient

Particulate Organic Carbon

Particulate Inorganic Carbon
Fluorescence Line Height

OCI Atmospheric data products

Spectral aerosol optical depth
Cloud layer detection

Cloud top pressure

Liquid & ice cloud optical depth
Liquid & ice cloud effective radius
Shortwave radiation effect

Polarimeter data products

Baseline Advanced OCI data products

Phytoplankton community structure
Phytoplankton physiology parameters
Photosynthetic pigments
Primary/community production
Dissolved Organic Carbon

Particle abundances

Particle size distributions

Carbon fluxes & export

Aerosol particle size distributions
Aerosol optical depth

Aerosol refractive index

Aerosol single scattering albedo
Aerosol shape & non-spherical fraction
Aerosol layer height

Cloud optical depth

Cloud liquid particle size distributions
Cloud ice particle shape & roughness
Cloud top & base height

and many other data products ... (land)
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