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SOCCOM Profiling Floats 
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Active floats 
80 / 200 

APEX biogeochemical float 

Oxygen sensor 

Nitrate 

pH sensor 

Iridium antenna 

Chlorophyll a fluorometer 
Backscattering 

CTD 

Float configuration: 
• Park at 1000 m 
• Profile from 

2000 m to surface 
• Profile every 5 or 10 days 

FLBB or MCOM 
backscattering (β) 

λ = 700 nm 
θ = 150 ° 

chla fluorescence 
excitation 470 nm 
emission 695 nm 

[WET Labs’ Report, 2016; Johnson et al., 2017, submitted]  



• VIIRS  
Visible Infrared Imaging Radiometer Suite 

• MODIS Aqua 
Moderate Resolution Imaging Spectroradiometer  

• Both satellites are: 
• polar orbiting 
• multispectral (visible and infrared detectors) 
• measure top of the atmosphere radiance 

• apply atmospheric correction 
• derive chla and POC from band ratios 

 

 
 

Ocean Color 

2 [Mobley et al., 2016; NASA Ocean Biology and Biogeochemistry group]  



Previous studies  

Bias Dataset Type Satellite(s) Reference(s) 

2.4 Fluorometrically 
extracted chla 

CZCS Mitchell and Holm-Hansen [1991]  
Sullivan et al. [1993]  

~2 Fluorometrically 
extracted chla 

SeaWiFS Dierssen and Smith [2000]  

~2 HPLC 
ADEOS 
SeaWiFS 
MODIS 

Mitchell and Kahru [2009] 
Kahru and Mitchell [2010]  

~2 HPLC MODIS Guinet et al. [2013]  
 

3-4 HPLC MODIS 
VIIRS 

Johnson et al. [2013]  

1 HPLC SeaWiFS Marrari et al. [2006] 
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Globally derived chla algorithm OCX validation in the Southern Ocean. 



SOCCOM floats 
• Spatially spread 
• Cover 5 seasonal cycles (2012-2017) 

• Bio-optical sensors calibrated with 
HPLC and POC samples 
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Calibrate chlorophyll a fluorometers 
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Fluorescence is a proxy for chlorophyll a 
chla:fluorescence yield ratio is affected by: the light history, the 
species composition, and the physiology of the phytoplankton. 

 
 

[Cullen et al., 1982]  

Sensor inter-
calibration 

• calibrate all 
sensors against a 
"golden" sensor 

Dark 
correction 

• correct for 
interference with 
fluorescent 
dissolved organic 
matter 

• find(min([chla])) at 
depth and subtract 
it from all profiles 

• similar correction 
as in Xing et al. 
[2016] 

Non 
Photochemical 

Quenching 

• if sun_elevation > 5° 
• mean(chlaXing2012, 

chlaSackmann2008)  

Slope 
correction 

• compare first 
profile with [chla] 
from HPLC taken 
within 24 hours of 
deployment 
(Roesler et al., 
2017) 

FYI: No significant 
difference day- 
only or night-only 
data. 
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Relationship between 
total chlorophyll a from HPLC and 
chlorophyll a fluorescence from floats 



From backscattering to POC 

Dark correction 

• if available, use pre-
deployment dark 

From the VSF to 
particulate 

backscattering 
(bbp) 

• The VSF of seawater 
(𝛽𝛽𝑠𝑠𝑠𝑠) is estimated with 
Zhang et al., [2009]  

• The particulate 
conversion factor 𝜒𝜒𝑝𝑝  

is 
estimated with       
Sullivan et al., [2013] 

From bbp to 
POC 

• Build a relationship 
specific to our 
dataset 
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𝑏𝑏𝑏𝑏𝑝𝑝 =  2 ×  𝜋𝜋 ×  𝜒𝜒𝑝𝑝 𝜃𝜃
× 𝛽𝛽 𝜃𝜃 − 𝛽𝛽𝑠𝑠𝑠𝑠 𝜃𝜃  



Relationship between POC and 
particulate backscattering at 700 nm 
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Deriving chla and POC from Rrs 
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Download images from NASA Ocean Color Level 2, reprocessing R2014.0 



Matching up 
Maximize the quality of the samples: 

• narrow time window (+/- 3 hours) 
• mean 5x5 pixel box centered on float profile 
• good atmospheric correction (mask level 2 flags) 
• Weighted vertical integration. 

➢ Very few matchups with MODIS 
Explained by: 

• floats’ surface time is not synchronized with satellites’ 
overpasses 

• polar night, high solar zenith angle (> 70 °) 
• high cloud coverage all year long 

 
 

10 [Bailey and Werdell, 2006]  



Maximize Number of Matchups 
• Widening spatial (8 km) and temporal (24 hr) window 

• increase the number of matchups 
• at the possible cost of quality 

11 [IOCCG Report, 2011]  



Comparison with Remote Sensing 
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VIIRS MODIS 



Regional variability: 
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SPGANT OCI 

SIZ: Sea Ice Zone 
PAZ: Polar Antarctic Zone 
SAZ: Subantarctic Zone 
STZ: Subtropical Zone 

Maximal spatial variability off slope with regions ~20%. 

Temporal variability: Not significant. 



Independent dataset 
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chlaHPLC = 1.15(±0.11) × chlasat + 0.05(±0.11)  
RMSD = 0.78 mg m-3 

RMSURD = 0.59 
N = 97  

Out of the 659 matchups only 97 respected the criteria defined earlier 
MODIS OCI matchups 

all the data available on February 1, 2017, south of 30 °S, on SeaBASS 
6242 HPLC samples from 1682 profiles between Oct 1995 and April 2011  
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VIIRS MODIS 

Comparison with Remote Sensing 



Conclusion 

• OCI performs well in the Southern Ocean 
• bias  in our dataset of 9 % for VIIRS and 12 % for MODIS 

 

• POC agrees well with float products 
• relatively low prediction capability 

 
In addition, autonomous floats can be used as a third 
dimension (depth) to complement remote sensing in 
the Southern Ocean (4D) 
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Thank you ! 
Questions ? 



Previous studies 
• Under-estimation of global chla algorithm: 

• Species composition 
• Physiology 
• Particulate Composition 

• Spatially limited: 
• > 95 % in narrow corridor south of Tasmania  

[Johnson et al., 2013]  
• Primarily in the Scotia Sea [Mitchell and Kahru, 2009] 

• Seasonally limited: 
• Primarily austral summer 

18 [Dierssen et al., 2010]  



Regional Trends with SeaBASS Dataset 
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