Phytoplankton to the Ocean's Biological Pump: How Far Have We Come & How Far Do We Have To Go?

Dave Siegel – UC Santa Barbara

Help from …
Mike Behrenfeld – Oregon State
Ken Buesseler & Scott Doney – WHOI
Emmanuel Boss - UMaine
Sevrine Sailley – Plymouth Marine Lab
Phil Boyd – Univ. Tasmania
Stéphane Maritorena, Norm Nelson & Erik Fields – UCSB
EXPORTS Science Plan Writing Team

Support from NASA Ocean Biology & Biogeochemistry Program
The Global Carbon Cycle

IPCC AR5 [2013]
The Global Carbon Cycle

- Marine biota are 3 PgC, yet net primary production is 50 PgC y^-1 (rapid turnover - weeks)
- Biological pump exports 13 PgC y^-1 from surface ocean to depth
- Nearly all exported C is remineralized to DIC or retained at depth as DOC
 Sequestration times range from months to millennia
The Biological Pump is Complicated
Need to understand, quantify & predict ecosystem processes that transfers C to depth
Need to improve estimates of carbon export from the euphotic zone (4 to 13 Pg C y\(^{-1}\))

Physical Transport
0.5 - 2.5 Pg C y\(^{-1}\)

Sinking Flux
4 - 8 Pg C y\(^{-1}\)

Migration Flux
0.5 - 1.5 Pg C y\(^{-1}\)
Need to quantify attenuation of the export flux within the twilight zone which controls long-term C sequestration.
Biological Pump

- Food web processes export organic matter from the surface ocean to depth
 Pathway for rapid C transport against a gradient of increasing inorganic C with depth

- This export is rapidly attenuated beneath the surface ocean where it is remineralized
 Vertical attenuation scale is important for quantifying ocean C sequestration

- Global C export estimates range from 4 to 13 PgC y\(^{-1}\) (predicting sequestration depths is worse…)
 We must do better
What Are Our Present-day Capabilities?

Annual Chl-a Concentration

NPP-VIIRS
Year = 2014

Annual Net Primary Production

VGPM MODIS/Aqua
Year = 2007
Present-day Capabilities

- Present ocean color satellite data provide long-term, consistent estimates Chl & NPP
- Chl & NPP do not describe carbon export or its vertical attenuation with depth
- Chlorophyll is often a poor index for phytoplankton C biomass
 - Colored DOM interference
 - Chl:C is f(light, nutrients, species, …)
- Most NPP models are empirical (& not very good…)
 - Recent models are mechanistic (& hopefully better…)
The Pelagic Food Web & C Export

Sigman & Hain [2012] Nature Education
Pelagic Food Webs & C Export

- Size is important
- Two sinking pathways: fecal & algal
- NPP by large phyto leads to algal export
- Grazing leads to fecal export
A Mechanistic Approach…

Observational Requirements:
NPP, phytoplankton size, grazing, …

\[\text{AlgEZ} = f_{\text{Alg}} \times NPP_L \]

\[\text{FecEZ} = (f_{\text{FecS}} \times \text{Grz}_S + f_{\text{FecL}} \times \text{Grz}_L) \times Z_{\text{eu}} \]

Following Michaels & Silver (1988), Boyd & Stevens (2002) & many more...
Remote Sensing of Particle Size Distribution

- PSD modeled as a function of the particle backscatter spectrum using Mie theory
- Enables partitioning of Phyto C & NPP into size classes
- Patterns follow expectations
 - Pico’s dominate oligotrophic regions
 - Micro’s are found only in high latitudes & upwelling regions

Loisel et al. [2007] *JGR-Oceans*
Kostadinov et al. [2009] *JGR-Oceans*
Kostadinov et al. [2010] *Biogeosciences*
Remote Sensing of Phytoplankton Carbon

• Phytoplankton carbon modeled using satellite optical backscatter
• Satellite obs Illustrate importance of photo-acclimation on Chl:C
• Validated by flow cytometer observations of phytoplankton C

Diagnosing Grazing Rates

- Upper layer (Z_{ML}) phytoplankton biomass budget

\[
\frac{dP_i}{dt} = \frac{NPP_i}{Z_{eu}} - Grz_i - m_i P_i - \frac{AlgEZ_i}{Z_{eu}} - Detrn(Z_{ml}, P_i)
\]

- Solve for Grz_S & Grz_L by measuring or modeling terms in Phyto C budget

- Dominant balance is between NPP & Grazing
A Mechanistic Approach…

Siegel et al. GBC [2014]
Global Mean Sinking Carbon Export

Export Flux
- Global: 5.9 PgC y\(^{-1}\)
- Robust to changes in parameters or input data
- Validated using regional export values \((^{234}\text{Th}; r^2=0.75)\)

Efficiency \(=\) Export / NPP
- Global: 10%
- Oceanographically sensible patterns...

Siegel et al. GBC [2014]
But, there Are Other Export Pathways...

Physical Transport of POC & DOC

Sinking Particle Flux

Vertical C Transport by Diel Migrating Zooplankton
Need to Know Ultimate Fate of Exported C

- Twilight zone ecology is poorly quantified
 Only recently were C budgets closed (Giering et al. 2014)
- Evidence that biomineralization is important
 Opal, carbonate & mineral dust ballasting of sinking material is thought to be important
 Links processes in the twilight zone with the upper ocean
Steps Forward…

• Improve, maintain & extend satellite data obs
 – PhytoC, NPP, PSD, NCP / Export, etc.

• Couple satellite data & models
 – Predictive understanding of export & fate of NPP
 – Planned NASA EXPORTS Field Campaign

• Implement novel satellite sensing tools
 – PACE & global hyperspectral ocean color observations
 – Advance models that retrieve both PSD & PFTs!
EXports

EXport Processes in the Ocean from RemoTe Sensing
What is EXPORTS?

A community-vetted science plan for a NASA field campaign

Goal: Predict the export & fate of ocean NPP from satellite & other observations

Hypothesis: Fate of ocean NPP is regulated by the state of the surface ecosystem

EXPORTS Science Plan is presently under consideration for implementation by NASA
PACE will improve our understanding of ocean ecosystems and carbon cycling through its...

- **Spectral Resolution** – 5 nm resolution to separate constituents, characterize phytoplankton communities & nutrient stressors
- **Spectral Range** – Ultraviolet to Near Infrared covers key ocean spectral features
- **Atmospheric Corrections** – UV bands allow ‘spectral anchoring’, SWIR for turbid coastal systems, polarimeter option for advanced aerosol characterization
- **Strict Data Quality Requirements** – Reliable detection of temporal trends and assessments of ecological rates on global scales
Advancing PSD Retrievals

• Mie calculations of \(a_p(\lambda) \) and \(b_{bp}(\lambda) \) for different linear PSD slopes (normalized to 490 nm)

\[
\frac{a_p(\lambda)}{a_p(490)} \quad \text{and} \quad \frac{b_{bp}(\lambda)}{b_{bp}(490)}
\]

• Use both \(\Delta \)'s in \(b_{bp}(\lambda) \) slope & \(a_p(\lambda) \) shape to constrain PSD slope & retrieve (maybe) more…

• Need hyperspectral data to do this!!!
Phytoplankton Functional Types

Different phytoplankton functional types have different pigments and absorption spectra.

Dierssen et al. L&O [2006]
Phytoplankton Functional Types

- SCHIAMACHY was an atmospheric chemistry mission with submicron resolution
- Spectral matching is used to discriminate cyanobacteria & diatoms (need good spectral resolution)
- Imagine if a satellite (PACE!!) was actually designed to do this...

- PFT’s will provide info on the composition of export flux
- First step for quantifying export flux attenuation from satellite obs

Bracher et al. BGS [2009]
Steps Forward…

• Improve, maintain & extend satellite data obs
 – PhytoC, NPP, Export, PSD, etc.

• Couple satellite data & models
 – Predictive understanding of export & fate of NPP
 – Planned NASA EXPORTS Field Campaign

• Implement novel satellite sensing tools
 – PACE & global hyperspectral ocean color observations
 – Advance models that retrieve both PSD & PFTs!