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Hyperspectral radiometry contains considerable potential information on 
phytoplankton community characteristics, above the first order signal variability 
typically determined by gross constituent concentrations. Such information has 
significant value across a broad range of applications, ranging from water quality 
to long term understanding of ecosystem variability 
 
We anticipate the launch of several hyperspectral sensors in the next five – seven 
years, with high quality radiometry and useable repeat cycles. Such sensors 
require complex compromises between user needs, increased spectral 
information, quality of radiometry, swath width/revisit times and other 
engineering/cost constraints…. 
  
Arguably, the community needs a clear and quantitative case outlining the 
advantages (and disadvantages) of hyperspectral missions across a wide range of 
water types; typical assemblage variability/succession types and targeted 
phytoplankton groups, biogeochemistry etc; and the ability to meet user needs 
and demonstrate impacts of achieving an innovative sensing capability….     

Hyper- vs Multispectral: What advantages for 
phytoplankton diversity applications? 



Main advantages of hyperspectral radiometry: 
 
•  Increased number of spectral bands, i.e. equivalent of additional multi-

spectral bands, allowing the targeting of new phenomena e.g. 
phycoerythrin and phycocyanin absorption and fluorescence, longer 
wavelength scattering related features…. 

•  High spectral resolution allows new techniques such as derivative 
analyses, similarity indices, and targeting the precise wavelength 
location of shifting spectral peaks…. 

•  High spectral resolution allows new atmospheric correction/reflectance 
processing techniques targeting removal of gaseous absorption related 
features in the water leaving radiance….   

Hyper- vs Multispectral: What advantages for 
phytoplankton diversity applications? 



Hyperspectral Sensors: Emerging Opportunities… 

atmospheric variability, air–water interface reflections and refraction
from diffuse and direct sky and sunlight (Brando & Dekker, 2003;
Hochberg et al., 2011; Hu et al., 2012; Wettle, Brando, & Dekker,
2004). Another equally important feature of sensor performance for
successful measurement of freshwater systems is sufficient dynamic
range to be able to make sensitive measurements over low radiance
pixels (water) while not saturating over neighboring bright pixels
(land or sunglint).

The combined effects of SNR anddynamic range impact the accuracy
of biophysical retrieval (e.g., Hu et al., 2012; Vanhellemont & Ruddick,
2014). For example, when Giardino, Brando, Dekker, Strömbeck and
Candiani (2007) used Hyperion to measure CHL and TR in Lake Garda
in Northern Italy, they had to convolve a 5 × 5 low pass filter over the
image to reduce the effects of the sensor's poor SNR and environmental
noise (Brando & Dekker, 2003; Wettle et al., 2004), effectively reducing
the spatial resolution from 30m to 150 m. Similarly, Vanhellemont and
Ruddick (2014) found it necessary to bin Landsat 7 ETM+ data to
9 × 9 pixels (270 m) to reach the noise equivalent of Landsat 8 OLI,
and had to further bin the data to 11 × 11 (330 m) due to the limited
digitization (8 bits) of Landsat 7 ETM+. Freshwater ecosystems are
spatially complex, and typically have both low (water) and high
(land) radiance targets in a single scene, making simultaneous mea-
surement of both problematic. The high SNR and large dynamic range
proposed for the HyspIRI mission makes it uniquely well designed for
measuring freshwater ecosystems accurately andmoderate to high spa-
tial resolution.

2.7. Current observation capabilities

For every type of measurement, there are tradeoffs in sensor resolu-
tion. Fig. 5 shows some of the most common satellite sensors used for
freshwater ecosystem measurements and their relation in terms of
spectral (x-axis), temporal (y-axis), and spatial resolution (size of the
bubble). HyspIRI's proposed spectral, temporal and spatial characteris-
tics occupy an observation space shared with only a few other satellite
missions. However, HyspIRI's observational capabilities make it unique
and necessary for freshwater ecosystem measurements, as it occupies
a unique niche in sampling space. Freshwater ecosystemmeasurements
from satellite remote sensing can be classified based on the sampling
strategy and frequency. We categorize these different schemes into
1) continuous samplers, 2) targeted mappers, and 3) global mappers.
Continuous samplers are geostationary satellites that can image high
temporal frequency (e.g., Korea's Ocean Color Satellite GOCI that
makes a measurement once an hour) of a specific location to provide
near-continuous monitoring of dynamic processes such as harmful
algal blooms and river plumes. Continuous samplers provide coarse
spatial resolution over a specific, targeted region. Targeted mappers
can be considered pseudo global mappers. Also in a lower earth orbit
(although not necessarily sun synchronous, e.g., the Hyperspectral Im-
ager for the Coastal Ocean, HICO, onboard the International Space Sta-
tion), targeted mappers acquire data over particular areas based on
data acquisition requests (e.g., NASA's EO-1 Hyperion or commercial
missions suitable for freshwater like Worldview 2 and 3; WV2, WV3),
or regular acquisitions over a region of interest (e.g. the Italian Space
Agency's proposed PRISMA mission, or the German Environmental
Mapping and Analysis Program) thatwill providemapping-like capabil-
ities over a specific region.

Fig. 5 shows the observation capabilities of common current and
near to launch sensors in terms of temporal, spectral, and spatial resolu-
tions. Several missions, such as the soon to be launched Sentinel-2Mul-
tispectral Instrument (S2-MSI) provide different spectral bands at
different pixel resolutions. Thus, while S2-MSI will have 13 spectral
bands across the visible, near and shortwave infrared regions, it will
only have four broad “multispectral bands” in the visible and near infra-
red regions at 10 meter pixel resolution.

Global mappers are valuable for providing regular, repeated mea-
surements of the globe over long periods of time. They typically are
also archivalmissions,meaning they provide a time series of regular ob-
servations. Archival global mappers are the most important category of
measurement for addressing multiple end user goals of resource moni-
toring and ecosystem science. Archival global mapping missions with
free and open data access policies have transformed scientific under-
standing of earth surface processes (National Research Council, 2007;
Wulder et al., 2012), and provide the most valuable datasets for moni-
toring (e.g., McCullough, Loftin, & Sader, 2012), and understanding
freshwater ecosystem processes and change (e.g., Olmanson, Brezonik,
& Bauer, 2014). While Fig. 5 depicts the observation capabilities of com-
mon current and near-ready to launch satellite missions, it includes
continuous and targeted mappers, such as Worldview 2 & 3 and Hype-
rion which may not be suited for ecosystem change measurements.
Fig. 6 explicitly summarizes the global mapping capability current and
near future global mapping capability for freshwater ecosystem science
and management. In comparison with current global mapping capabil-
ities, HyspIRI occupies a unique measurement space in both its spatial
resolution and temporal resolution, and provides significantly more
spectral information than any other global mapper (Fig. 6).

3. Case studies

The following case studies illustrate how the characteristics of a
hyperspectral global mapping satellite mission, such as the planned
HyspIRI mission, address the needs of freshwater aquatic system scien-
tists and managers. We use as our example for freshwater aquatic ecol-
ogy the remote sensing of primary producers. In the following case
studies we highlight published data and existing methods, demonstrat-
ing thematurity of the science. However, each case study demonstrates
existing gaps in the spatial, temporal, and spectral characteristics of the
application, highlighting the need of a mission that will fill these gaps.

3.1. Site description

TheMantua lake system is an important freshwater wetland system
inNorthern Italy that provides critical habitat for aquatic vegetation and
water birds in the region. TheMantua system is formed by the damming
of theMincio River, a tributary of the Po, and fed by Lake Garda, the larg-
est lake and longest river of Italy, respectively. The lake waters are

Fig. 5. The spectral (x-axis), temporal (y-axis), and spatial (size of the bubble) character-
istics of satellite sensors commonly used for freshwater ecosystem measurements. Note:
sensors that provide different spatial resolutions are plotted separately, and sensors
with overlapping resolution characteristics are slightly jittered for graphing purposes.
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Hyperspectral Sensors: Need for High Quality Radiometry 
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In Situ Measurements:  Need for Improved Capability 

HPLC & CHEMTAX ≠ necessary biophysical phytoplankton assemblage data 
 
We cannot use satellites to determine phytoplankton diversity if we do not routinely make 
sufficiently detailed measurements of that diversity. There needs to be a community and agency 
push towards broader adoption, further development and standardised protocols for emerging 
sensors such as imaging flow cytometers, holographic microscopes and other technologies 
allowing routine measurements of detailed cellular information such as size and taxonomy. 

Report on IOCCG workshop: “Phytoplankton Composition from Space: towards a validation 
strategy for satellite algorithms”, October 2014 
 
Consideration of the measurements required for validating PFT algorithms produced the following 
list. 
• Size-fractionated measurements of both HPLC pigments and particulate light absorption. 
• Measurements of phycobilin concentrations, equally in size fractions, to the suite of 
pigments (for Synechococcus, cryptophytes, Trichodesmium) 
• FlowCytobot/FlowCAM/flow cytometry (both traditional and imaging) 
• Radiometry, both above water and in-water, hyperspectral 
• Inherent optical properties (absorption, backscattering, VSF) 
• Particle size distribution (PSD, e.g. via LISST) 
• Size-fractionated measurements 
• Genetics/-omics 



From	  100963	  spectra	  collected	  in	  the	  Bal)c	  Sea…	  

…289	  (0.29%)	  show	  extreme	  
phycoerythrin	  absorp)on	  	  and	  a	  
dis)nct	  orange	  	  
peak	  at	  590-‐600	  nm	  

PE	  

Possibly	  fluorescence	  by	  PE	  

Simis	  et	  al.	  in	  prep	  

www.ferryscope.org	  

Hyperspectral Approaches: Examples of Additional 
Spectral Information 



No	  590	  nm	  band	  from	  current	  sensors	  

Hyperspectral Approaches: Examples of Additional 
Spectral Information 



Hyperspectral Approaches: Examples of Additional 
Spectral Information 
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Fig. 6. Modelled EAP Rrs (above) for typical dinoflagellate assemblage with effective di-
ameter of 16 µm. Chl a concentrations are 1, 2, 5, 10, 20, 30, 50, 100, 150, 200 mg.m−3.
Below the shift frommaximum peak reflectance height in the blue/green to the red is shown
(dotted lines), for increasing Chl a. The first derivatives of these slopes (solid lines) cross
at a Chl a of around 15 mg.m−3, the point at which the red features of high biomass re-
flectance spectra start to dominate.

6, as per the SeaWiFs OC4 Chl a retrieval algorithm [21]) shows the importance of signal in
the red for Chl a estimation in waters with concentrations over about 25 mg.m−3.

Other notable features of Rrs with increasing eutrophication are convergence at around 660
nm, as well as around 560 nm, and the well constrained region between these points. The
decrease in Rrs in the blue is indicative of decreased influence of gelbstoff absorption with
respect to Chl a absorption as the latter becomes more dominant spectrally.

4.5. EAP Rrs validation at very high biomass

Some very high biomass TSRB measured Rrs are presented here. The measurements (N=4,
6 and 5 respectively) represent a range of assemblage types and size distributions, which the
EAP forward modelled Rrs do not consider here. This brief validation exercise shows that a
chosen effective diameter of 12 µm most accurately matches all three high biomass blooms
(for Chl a of 110, 150 and 180 mg.m−3 respectively). Most of the Rrs measurements were
from a Prorocentrum triestinum-dominated bloom in 2005, with varying lesser proportions of
Dinophysis acuminata, D. fortii and P. reticulatum [22]. P. triestinum is a small dinoflagellate
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Eutrophic and hypertrophic waters 
contain considerable phytoplankton 
scattering related signal in the 570 
– 650 nm and above 680 nm. 
Additional hyperspectral related 
signal in these regions would be 
very valuable…. 



Hyperspectral Approaches: Examples of Phytoplankton 
Diversity Applications….Multiple Groups 

multispectral (TIR) resolution, at a spatial scale of 60 m GSD, with a 19-
day return rate. Competing interests necessarily influence the develop-
ment of this satellite sensor suite to optimally image the Earth to ad-
dress the science questions put forth by the Decadal Survey.

The Case 2waters of the coastal zonehave special needswith respect
to sensor sensitivity, sensor calibration (Kohler, Bissett, Steward, &
Davis, 2004), dark pixel constraints (Gao & Davis, 1997), and atmo-
spheric correction (Gao & Goetz, 1990). The ocean is a radiometrically
dark target with a surface albedo in the range of 5–10% (Kirk, 1994).

As a result, image sensors collecting light emitted from optically deep
ocean targets must have the appropriate sensitivity, or SNR, for such
an environment. Historically, imager SNR is optimized in the green
(~550 nm) part of the visible spectrum with decreasing SNR towards
the blue and UV and also towards the NIR (Moses et al., 2012), as is
the case with the AVIRIS sensor (Green et al., 1998). Sensor design for
dark ocean targets must reconcile the competing need for high SNR
throughout the visible range and high dynamic range (or saturation ra-
diance) in theNIR in order to both quantify small magnitude differences
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Fig. 5. Phytoplankton biodiversity— PHYDOTax estimates. Taxon-specific biomass estimated for dinoflagellates, diatoms, and cyanobacteria using PHYDOTax applied to the ATREM+ at-
mospheric corrected imagery. 10 Apr 2013: A) dinoflagellates, B) diatoms, C) cyanobacteria. 31 Oct 2013: D) dinoflagellates, E) diatoms, F) cyanobacteria.
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Fig. 5. Phytoplankton biodiversity — 
PHYDOTax estimates. Taxon-specific biomass 
estimated for dinoflagellates, diatoms, and 
cyanobacteria using PHYDOTax applied to the 
ATREM+ at- mospheric corrected imagery. 10 
Apr 2013: A) dinoflagellates, B) diatoms, C) 
cyanobacteria, D) dinoflagellates, E) diatoms, 
F) cyanobacteria. 

HyspIRI simulations from airborne data using 
the PHYDOTax spectral library/inversion 
approach 



Hyperspectral Approaches: Examples of Phytoplankton 
Diversity Applications….Cyanobacteria 

Lin	  Li	  ,	  Rebecca	  E.	  Sengpiel	  ,	  Denise	  L.	  Pascual	  ,	  Lenore	  P.	  Tedesco	  ,	  Jeffrey	  S.	  Wilson	  &	  Emmanuel	  Soyeux	  (2010)	  
Using	  hyperspectral	  remote	  sensing	  to	  es)mate	  chlorophyll-‐a	  and	  phycocyanin	  in	  a	  mesotrophic	  reservoir,	  
Interna)onal	  Journal	  of	  Remote	  Sensing,	  31:15,	  4147-‐4162	  

Spectral ratio 
based approach 

Figure 6. Correlation between estimated and measured phycocyanin (PC) concentration.

Figure 7. Phycocyanin (PC) concentration derived by applying the relationship shown in
figure 5 to the calibrated AISA imagery of Geist Reservoir (see figure 1 for its location). Note
that a PC ‘hot spot’ is located on the left side of the figure, and the high PC value along the shore
of this reservoir is due to the effect of the bottom reflection, which cannot be accounted for by
the relationship in figure 5.
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The results for the spectral ratios (e.g. R699–705 / R670–677 and R698–716 / R671–684)
presented in this study are not as good as previously published studies where high
correlations and low RMSEs were obtained (e.g. Kallio et al. 2001, 2003), indicating
that these spectral-band ratios are not optimal spectral indices for Geist Reservoir.

3.3 Estimation of PC concentration

The results for estimating PC are presented in table 3, indicating that PC concentra-
tion correlated best with the spectral index R628. The relationship between R628 and
PC concentration is shown in figure 5 where two variables are linked via an exponen-
tial relation. The correlation between measured and estimated PC values is shown in
figure 6, indicating that the relationship between R628 and PC concentration resulted
in a RMSE of 25.52 mg l–1 when compared to the measured PC concentration.
Figure 7 shows the PC concentration map of Geist Reservoir derived by applying
the relationship shown in figure 5 to the calibrated AISA image. A PC ‘hot spot’ is
evident on the left-hand side of figure 7, but the high PC value along the shore of this

Table 3. Spectral indices (x) derived from AISA reflectance spectra and their relationships to
correlation to measured phycocyanin concentration (y).

Spectral index Model R2 RMSE(mg l–1)

[1]0.5(R600 þ R647) – R628 log10(y) ¼ 0.008x–0.93 0.69 30.42
[2]R647 / R628 log10(y) ¼ –99.61x2 þ 218.5x – 117.8 0.62 30.92
[3]R704 / R628 log10(y) ¼ –3.137(log10(x))

2

þ 10.21log10(x) – 6.256
0.47 32.46

[4]R628 log10(y) ¼ 0.2896e–1.104log10(x) 0.80 25.52

[1] Dekker (1993); [2] Schalles and Yacobi (2000); [3] Simis et al. (2005); [4] Millie et al. (1992).
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Figure 5. Relationship between phycocyanin (PC) and the AISA reflectance at 628 nm (R628).
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Hyperspectral Approaches: Examples of Phytoplankton 
Diversity Applications….Cyanobacteria 

Kudela,	  R.M.,	  et	  al.,	  Applica)on	  of	  hyperspectral	  remote	  sensing	  to	  cyanobacterial	  blooms	  in	  inland	  waters,	  Remote	  
Sens-‐	  ing	  of	  Environment	  (2015),	  hLp://dx.doi.org/10.1016/j.rse.2015.01.025	  

Scattering based 
approach 

from Microcystis to Aphanizomenon. Low AMI values (~2) were empiri-
cally determined to be dominated byMicrocystiswhile high values (~5)
were dominated by Aphanizomenon. A caveat of this approach is that the
AMI doesn't provide useful information if there is no cyanobacterial
bloom.

3.4. Field application of indices

Fig. 7 shows the two biomass indices, the CI and SLH, plotted versus
the corresponding microcystin concentration from the same dates for
Pinto Lake, and the AMI plotted versus microcystin concentration for
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Fig. 3. Time series of approximately weekly water samples collected at Pinto Lake, CA showing (A) water temperature, (B) chlorophyll (open circles) and phycocyanin (shaded circles)
concentration, and (C) microcystin LR concentrations. The yellow, orange, and red shading on the timeline denotes periods of dominance by Aphanizomenon, a mixed community, and
dominance by Microcystis, respectively. Black/gray triangles indicate data collection for above-water spectra (black) and HICO imagery (gray). The numbers/letters with the triangles in
the bottom panel indicate annotations for the corresponding spectra in Fig. 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.).

bb /b = 0.003, C = 20 µg/L
bb /b =0.003, C = 10 µg/L
bb /b = 0.003, C = 5 µg/L
bb /b = 0.0150, C = 20 µg/L
bb /b = 0.0150, C = 10 µg/L
bb /b = 0.0150, C = 50 µg/L

Fig. 4. Results from the SLH algorithm derived from Hydrolight simulations of cyanobacteria, with varying concentrations of chlorophyll and backscattering ratios. SLH is relatively insen-
sitive to changes in chlorophyll. Vertical gray lines indicate MASTER bands used for SLH.
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Hyperspectral Approaches: Examples of Phytoplankton 
Diversity Applications….Phaeocystis 

Lubac,	  B.,	  H.	  Loisel,	  N.	  Guiselin,	  R.	  Astoreca,	  L.	  Felipe	  
Ar)gas,	  and	  X.	  Mériaux	  (2008),	  Hyperspectral	  and	  
mul)spectral	  ocean	  color	  inversions	  to	  detect	  Phaeocys)s	  
globosa	  blooms	  in	  coastal	  waters,	  J.	  Geophys.	  Res.,	  113,	  	  

dl2Rrs is observed around 480 nm, and when Cp tends
toward 90%, this minimum is observed around 510 nm.
[20] The method based on the shifts of the extremes in the

dl2Rrs spectra is chosen to identify the spectra corresponding
to a P. globosa bloom in our whole Rrs(l) data set. On the
basis of the results presented above, we define two criteria
to discriminate the P. globosa blooms from diatoms blooms
(Cp higher than 60%): the maximum of dl2Rrs in the 460–
480 nm spectral range has to be observed beyond 471 nm,
and the minimum of dl2Rrs in the 480–510 nm spectral
range has to be observed beyond 499 nm. The application of
these two criteria to our whole Rrs(l) data set provides 21
spectra associated with P. globosa blooms. This is in
agreement with a qualitative analysis based on our in situ
observations.

3.3. Comparison of the RRS(l)-Hyperspectral Analysis
With the af (l)-Similarity Index Analysis

[21] The classification of the Rrs(l) spectra obtained from
the two criteria presented above, is compared to that

achieved by means of a similarity index analysis as
described by Millie et al. [1997]. This last method was
successfully applied for the detection and assessment of the
harmful alga, Karenia Brevis [Craig et al., 2006]. In the
present study, the similarity index (SI) is computed between
the second derivative of an in situ reference P. globosa
absorption spectrum (aphaeo-in situ

ref (l)) and the second deriv-
ative of an in situ unknown phytoplankton population
absorption spectrum (af-in situ(l)) in the 400–540 nm
spectral range. Then, based on a relationship between SI
and the P. globosa biomass, the absorption spectra identified
as P. globosa are selected. This study is performed in 400–
540 nm spectral range because, the spectral variability of
af(l) is sufficiently high to discriminate a phytoplankton
community dominated by P. globosa from a phytoplankton
community dominated by diatoms. Indeed, the SI value
computed between the second derivative of the P. globosa
absorption spectrum and the second derivative of the
diatoms absorption spectrum, both obtained from culture,

Figure 4. (a) Mean and (b) second derivatives spectra of Rrs(l) associated with the group 1 (P. globosa),
group 2 (mixed), and group 3 (diatoms) (see Table 1).
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is around 0.59 in the 400–540 nm spectral range, versus
0.78 in the 400–700 nm spectral range.
[22] Because of the lack of in situ phytoplankton absorp-

tion measurements, af-in situ(l) is derived from Rrs(l) using
the quasi-analytical algorithm of Lee et al. [2002]. Figure 6a
shows the spectra of af(l) retrieved from our whole Rrs(l)
data set. aphaeo-in situ

ref (l) is then computed as the mean
spectrum of the retrieved af-in situ(l) associated with P.
globosa blooms (group 1 in Table 2). To verify the

consistency of the retrieval, the spectrum of aphaeo-in situ
ref (l)

and its second derivative are compared to those
obtained from P. globosa cultures by Astoreca [2007],
(aphaeo-culture(l)) (Figures 6b–6c). A relatively good agreement
is observed between the field retrieved and laboratorymeasured
absorption spectra (Figure 6b). Importantly, the maxima and
minima of the second derivative of aphaeo-in situ

ref (l) and
aphaeo-culture(l) are observed at the same wavelengths
(Figure 6c). The main sources of discrepancies between the

Figure 5. Variation of the P. globosa biomass (Cp, expressed in %) as a function of (a) the position of
the maximum of the second derivative of Rrs(l) in the range 460–480 nm (l(max(d2Rrs))), and (b) the
position of the minimum of the second derivative of Rrs(l) in the range 480–510 nm (l(min(d2Rrs))). The
black lines represent the linear regressions between Figure 5a Cp and l(max(d2Rrs)), and Figure 5b Cp

and l(min(d2Rrs)). The regression equations, the number of observations (N), and the squared correlation
coefficient (r2) are given.

Figure 6. (a) Phytoplankton absorption spectra (N = 93) retrieved from Rrs(l) using the quasi-analytical algorithm
developed by Lee et al. [2002]. (b) Field retrieved (aphaeo-in situ

ref (l)) and laboratory measured (aphaeo-culture(l)) normalized
absorption spectra of P. globosa (see text for details), and (c) their second derivatives.
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IOP Budget Based Assemblage Contribution to the Ocean Colour Signal  

Assemblage related 
sensitivity in 
reflectance is highly 
dependent on algal 
biomass, as 
determined by the 
relative algal 
contribution to the 
IOP budget… 

a(er	  Robertson	  Lain,	  L.,	  Bernard,	  S.,	  and	  Evers-‐King,	  H.	  (2014)	  Biophysical	  modelling	  of	  phytoplankton	  communi)es	  from	  first	  
principles	  using	  two-‐layered	  spheres:	  Equivalent	  Algal	  Popula)ons	  (EAP)	  model.	  Op)cs	  Express,	  22(14),	  16745–16758..	  



Phytoplankton size and the changing hyperspectral signal 
with increasing biomass 

An Equivalent Algal Population model coupled to Ecolight allows description of the reflectance 
range associated with assemblage effective diameters from 4 to 40 µm. Case 1 waters only, i.e. 
the best case scenario….  

a(er	  Evers-‐King,	  H.,	  Bernard,	  S.,	  Robertson	  Lain,	  L.,	  and	  Probyn,	  T.	  A.	  (2014)	  Sensi)vity	  in	  reflectance	  aLributed	  to	  
phytoplankton	  cell	  size:	  forward	  and	  inverse	  modelling	  approaches.	  Op)cs	  Express,	  22(10),	  11536–11551.	  

reflectance	  over	  modelled	  size	  range	  (suitable	  for	  biomass	  based	  on	  allometry)	  at	  a)	  0.1,	  1	  b)	  3	  c)	  10	  and	  d)	  100	  mg/
m3	  [Chl	  a].	  The	  central	  solid	  line	  represents	  the	  modelled	  value	  plus	  expected	  measurement	  uncertainFes	  at	  
effecFve	  diameter	  =	  10	  microns	  



Note that in highly scattering waters the size related signal is very much reduced….. 

Evers-‐King,	  H.,	  Bernard,	  S.,	  Robertson	  Lain,	  L.,	  and	  Probyn,	  T.	  A.	  (2014)	  Sensi)vity	  in	  reflectance	  aLributed	  to	  
phytoplankton	  cell	  size:	  forward	  and	  inverse	  modelling	  approaches.	  Op)cs	  Express,	  22(10),	  11536–11551.	  

Fig. 2. Ranges of modelled Rrs to variations in De f f and [Chl a], under high bbs and high
agd conditions. Note the differences in scale, where (b - ES) shows much higher Rrs values
than (a - REFA). Dots indicate Rrs associated with smallest cells. c) Shows example ranges
of spectral Rrs at selected [Chl a] across the modelled size range using ES.

dominant against non-algal backscattering. Similarly, additional absorption in the presence of
high agd , suppresses size related variability in the blue. In these “case two” type waters, partic-
ularly the highly scattering case, the differences in the two radiative transfer schemes becomes
most pronounced. The Rrs values generated by ES under high bbs (Fig. 2(b)), are significantly
higher than those from the REFA approach. Also, different trends in size related variability
with biomass are observed, particularly in the red, as a result of the propagation of the high
bbs influence in to the bidirectional effects, which in the REFA approach are constrained by the
f/Q parameterisation both in terms of magnitude and spectral shape.
In interpreting these results in the context of ocean colour data, it should be noted that the

substantial sensitivity observed in Fig. 1 likely represents a “best case” scenario. The simplified
size parameterisation may overstate the available signal (see discussion below (section 3.5). It
is likely that IOP covariance is often more extreme (i.e. high biomass is often associated with
case 2 coastal waters (Fig. 2) and measurement and/or atmospheric correction errors are likely
to add substantial uncertainty.

3.2. Inversion errors in cell size retrievals

Comprehensive discussion and estimation of the ambiguity and minimum errors associated
with the physical problem of ocean colour inversion was conducted by Defoin-Platel and Chami
[20]. An approximation of this approach, using the simulated data, can provide insight in to both
the role of phytoplankton size in this ambiguity, and the minimum errors one may expect from
the inversion approach used here prior to application to in situ data where measurement error
will also factor. In addition to the Nelder-Mead simplex, several mathematical techniques in-
cluding Levenberg-Marquardt optimisation and an evolutionary algorithm were explored, how-
ever the Nelder-Mead simplex provided the most consistent and optimal results for both the
in situ and simulated data inversion.
Figure 3 shows the root mean squared errors in De f f prediction over the simulated data set,

for four generalised conditions: low agd and low bbs (“case one”/the “Benguela type” waters
above), high agd and low bbs, low agd and high bbs, and high agd and high bbs (case two/gelbstoff
and sediment influenced waters). Lowest errors occur in the context of Benguela type waters,
with low agd and low bbs. High error and substantial scatter in RMSE values across biomass
levels for the high bbs scenarios suggests significant ambiguity may be introduced under highly
scattering conditions. As a result of this presumably more accurate handling of bidirectional-

#203303 - $15.00 USD Received 17 Dec 2013; revised 6 Feb 2014; accepted 6 Feb 2014; published 6 May 2014
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Phytoplankton size and the changing hyperspectral signal 
with increasing biomass 



Phytoplankton ultrastructure and the changing 
hyperspectral signal with increasing biomass 

Vacuoles greatly 
increase the scattering 
for equivalent cells – 
this is a clear and easily 
used signal, at least for 
high biomass inland/
coastal waters… 

MaLhews,	  M.	  W.	  and	  Bernard,	  S.:	  Using	  a	  two-‐layered	  sphere	  model	  to	  inves)gate	  the	  impact	  of	  gas	  vacuoles	  on	  the	  inherent	  
op)cal	  proper)es	  of	  Microcys)s	  aeruginosa,	  Biogeosciences,	  10,	  8139-‐8157,	  doi:10.5194/bg-‐10-‐8139-‐2013,	  2013.	  

8152 M. W. Matthews and S. Bernard: Impact of gas vacuoles on inherent optical properties
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Fig. 8. (A) bbp(700) vs. bbp(420) from 11 profiles. Note exponen-
tial relationship with log-scaled axes. (B) Five selected depth pro-
files with minimum depth of 0.8m. Note that bbp(420)> bbp(700)
at depth.

order of magnitude as those estimated from Rrs. The b∗
bp val-

ues are likely underestimates since Chl a was measured at
the surface and the blooms were floating. There is some dis-
agreement in the spectral shape between Zhou et al. (2012)
(Chl a approximately 5mgm−3) and the two-layered sphere
estimates (Fig. 7f). Interestingly, bbp is positively sloped to-
wards the red near the surface and negatively sloped at depth
(Fig. 8b). Therefore there is some evidence for an upward-
sloping bbφ for M. aeruginosa, in contrast to those of Zhou
et al. (2012), which are downward-sloping. The explana-
tion for the depth-variable slope is not known, but seems to
be related to biomass; if biomass affects the spectral slope,
then this finding has has important implications for bbp mea-
sured using cultures. In summary, the b∗

bφ values are typi-
cally larger or in the upper range of those determined experi-
mentally for cultured algae (e.g. Whitmire et al., 2010; Vail-
lancourt, 2004), and are in good agreement with the limited
measurements made on vacuolate M. aeruginosa.
The modelled Rrs spectra correspond to chromatoplasm

1+ � values varying between 1.104 and 1.138 with a mean
value of 1.12. The 1+� values estimated using Rrs are likely
to be justified for the following reasons: the overwhelming
optical dominance of phytoplankton relative to other wa-
ter components, meaning that from an optical perspective,
the measurements were effectively performed on “cultures”;
aside from Vg and some small uncertainty related to the es-
timated PSD, the primary factor controlling phytoplankton
backscatter is the chromatoplasm 1+ � value, which was the
only variable parameter used to determine appropriate val-
ues for Rrs; the range of 1+ � values fall in the expected
range of eukaryotic chloroplasts of 1.09 to 1.19, mean of 1.14
(Bernard et al., 2009), and result in an overall homogeneous
n of 0.97 by volume equivalence; and finally, the resulting
values determined for b∗

bφ are in close agreement with mea-
surements made on vacuolate cultures and natural blooms of
M. aeruginosa.
Furthermore, the chromatoplasm 1+ � values accord with

previous two-layered modelling efforts: Quinby-Hunt et al.
(1989) used a shell layer n= 1.13 and core n= 1.08 to best

Fig. 9. Rrs modelled at various concentrations of Chl a showing
the difference between vacuolate (solid lines) and non-vacuolate
(dotted lines) populations of M. aeruginosa. Vacuolate cells were
modelled with shell 1+� of 1.12 and Vg = 50%. Non-vacuolate cells
were homogeneous cells with 1+� of 1.080. The values for atr(440)
and ag(440) were constant at 0.5 and 1.5m−1, respectively. For
more details, see the text.

reproduced the scattering matrix of Chlorella, a species with
similar morphology to M. aeruginosa, and the typical 1+ �

value for a shell layer proxy for the cell wall is 1.2 (e.g.
Svensen et al., 2007). Given these considerations, the result-
ing 1+ � values as determined by Rrs are likely to be ap-
propriate, although assumptions are made regarding several
components affecting the Rrs (e.g. the VSF for the tripton
particles estimated using a Mie model).

Q factors and Chl a-specific volume coefficients deter-
mined using the two-layered sphere with the mean chro-
matoplasm 1+ � value of 1.12 are shown in comparison to
those measured by Zhou et al. (2012) in Table 4. The val-
ues for Qb(510) and Qbb(510) compare well, but measured
b∗
φ values are substantially higher than those from the two-
layered sphere. It appears that the two-layered model has a
lower total scattering due to the slightly lower value of Qb.
The backscattering probability is also elevated for the two-
layered model, although b∗

bφ(510) is very close.
In comparison with eukaryotic speciesQbb is in the upper

range of values measured on cultures: from 0.0018 to 0.064
at 510 nm (Zhou et al., 2012; Vaillancourt, 2004) and from
0.006 to 0.061 at 442 nm (Whitmire et al., 2010). Surpris-
ingly, the largest ofQbb values are from large dinoflagellates
containing high intracellular carbon concentrations and un-
usual chromosome morphology and internal structures. This
internal structure is used as an explanation for the higher-
than-expectedQbb. Using similar reasoning, intracellular gas
vacuoles in M. aeruginosa are responsible for the high Qbb
values.

Biogeosciences, 10, 8139–8157, 2013 www.biogeosciences.net/10/8139/2013/
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Phytoplankton accessory pigments and the hyperspectral 
signal with increasing biomass: a brief experiment… 

How does the accessory pigment related 
component of the reflectance signal change 
with increasing biomass – and increasing algal 
contribution to the IOP budget? 
 
A small experiment – modelling changing 
reflectance based on the Equivalent Algal 
Population/Hydrolight model, comparing 
dinoflagellate- and cryptophyte (Mesodinium 
rubrum) based IOPs. Average cell size and all 
other IOPs are the same – the only difference 
comes from the spectral refractive indices i.e. 
the different pigment content of the assemblage, 
and obviously the increasing biomass. Case 1 
waters only, i.e. the best case scenario…. 
 
Total absorption and backscattering on the left, 
thick lines represent Mesodinium i.e. 
phycoerythrin containing cells, spectrally 
variable phase functions based on the 
backscattering probability used… 
 
Robertson, unpublished 

Increasing	  Chl	  
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Quantitatively useful pigment related differences – in 
this fairly extreme case – are apparent from ± 2 mg 
m-3 Chl a in the blue. As the biomass increase the 
higher Δ signals shift to longer wavelengths…. 
Robertson, unpublished  

Increasing	  Chl	  

ΔRrs 
|R(Dino) – R(Meso)| 

High Δ around 470 nm  
absorption peak (Chl c/

carotenoid) from ± 2 to 20 
mg m-3 Chl a    

High Δ around 520 nm  
absorption peak 

(Phycoerythrin) from ± 4 
mg m-3 Chl a    

High Δ around shifting 580 
– 590  nm  reflectance 

peak (Phycoerythrin) from 
± 10 mg m-3 Chl a    

Dino and Meso (thick 
lines) dominated 
reflectance with 0.3 -> 
100 mg m-3 Chl a  

Phytoplankton accessory pigments and the hyperspectral 
signal with increasing biomass: a brief experiment… 



Phytoplankton Biodiversity in the Coastal Zone using 
Hyperspectral Sensing 

1) What do you think are the driving science questions in your sub-discipline that will guide your community in the 
coming decade? 
Better understanding of the drivers and effects of variable primary production across oceanic and aquatic systems, and the 
importance of resolving phytoplankton community structure, preferably at the submeso- and event scale… 
 
2) How will hyperspectral data help to address those questions? 
Offering more information on phytoplankton community structure, if we can better understand the causali 
 
3) How does ‘scale’ (e.g., spectral, spatial, and/or temporal) affect your ability to address these science questions?  What 
is the smallest measurement ‘scale’ needed to address your science? 
The most challenging scale is the the temporal/spatial, probably the daily or less revisit /300m spatial resolution boundary 
i.e. constellation/geostationary approaches 
 
4) What are the common challenges across sub-disciplines in working with hyperspectral data? 
Engineering: quality of radiometry & spatial/temporal aspects. Science : better understanding of signal variability and 
constraints, robust error handling needed. 
 
5) How do we coordinate and integrate common algorithm development efforts? 
Community platforms for collaboration/comparison; shared measured/synthetic data sets; realise that the atmospheric 
correction algorithms currently more of a constraint than the in-water algorithms 
 
6) Are there any observational or programmatic gaps across the planned hyperspectral missions? 
Yes, routine and well constrained phytoplankton community structure measurements 
 
7) What other space-based measurements or modeled data, done in parallel to hyperspectral measurements, would you 
like to have to obtain more out of ocean color? 
Hydrodynamic/biogeochemical/particle models using the same bio-optical models to allow convergence at Lw level 
 


