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Hyper- vs Multispectral: What advantages for
phytoplankton diversity applications?

GSIR

our future through science

Hyperspectral radiometry contains considerable potential information on
phytoplankton community characteristics, above the first order signal variability
typically determined by gross constituent concentrations. Such information has
significant value across a broad range of applications, ranging from water quality
to long term understanding of ecosystem variability

We anticipate the launch of several hyperspectral sensors in the next five — seven
years, with high quality radiometry and useable repeat cycles. Such sensors
require complex compromises between user needs, increased spectral
information, quality of radiometry, swath width/revisit times and other
engineering/cost constraints....

Arguably, the community needs a clear and quantitative case outlining the
advantages (and disadvantages) of hyperspectral missions across a wide range of
water types; typical assemblage variability/succession types and targeted
phytoplankton groups, biogeochemistry etc; and the ability to meet user needs
and demonstrate impacts of achieving an innovative sensing capability....



Hyper- vs Multispectral: What advantages for GIR
phytoplankton diversity applications?
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Main advantages of hyperspectral radiometry:

* Increased number of spectral bands, i.e. equivalent of additional multi-
spectral bands, allowing the targeting of new phenomena e.g.
phycoerythrin and phycocyanin absorption and fluorescence, longer
wavelength scattering related features....

 High spectral resolution allows new techniques such as derivative
analyses, similarity indices, and targeting the precise wavelength
location of shifting spectral peaks....

 High spectral resolution allows new atmospheric correction/reflectance
processing techniques targeting removal of gaseous absorption related
features in the water leaving radiance....



Hyperspectral Sensors: Emerging Opportunities... GIR
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Fig. 5. The spectral (x-axis), temporal (y-axis), and spatial (size of the bubble) character-
istics of satellite sensors commonly used for freshwater ecosystem measurements. Note:
sensors that provide different spatial resolutions are plotted separately, and sensors
with overlapping resolution characteristics are slightly jittered for graphing purposes.

Hestir, E.L., et al., Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping
satellite mission, Remote Sensing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.05.023




Hyperspectral Sensors: Need for High Quality Radiometry GIR
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Figure 2. The average SNR calculated from the at-sensor radiances (of all 490 images) for
the low- and high-SNR systems. The ratio of the average SNR for the high-SNR system to
that for the low-SNR system is plotted on the secondary axis.
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In Situ Measurements: Need for Improved Capability GIR
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HPLC & CHEMTAX # necessary biophysical phytoplankton assemblage data

We cannot use satellites to determine phytoplankton diversity if we do not routinely make
sufficiently detailed measurements of that diversity. There needs to be a community and agency
push towards broader adoption, further development and standardised protocols for emerging
sensors such as imaging flow cytometers, holographic microscopes and other technologies
allowing routine measurements of detailed cellular information such as size and taxonomy.

Report on IOCCG workshop: “Phytoplankton Composition from Space: towards a validation
strategy for satellite algorithms”, October 2014

Consideration of the measurements required for validating PFT algorithms produced the following
list.

e Size-fractionated measurements of both HPLC pigments and particulate light absorption.
e Measurements of phycobilin concentrations, equally in size fractions, to the suite of
pigments (for Synechococcus, cryptophytes, Trichodesmium)

* FlowCytobot/FlowCAM/flow cytometry (both traditional and imaging)

e Radiometry, both above water and in-water, hyperspectral

* Inherent optical properties (absorption, backscattering, VSF)

e Particle size distribution (PSD, e.g. via LISST)

e Size-fractionated measurements

* Genetics/-omics



Hyperspectral Approaches: Examples of Additional
Spectral Information
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Hyperspectral Approaches: Examples of Additional
Spectral Information

No 590 nm band from current sensors

[y

T 5038 -
€8
§ S 06 {
2 's | MODIS (Aqua)
2 204 1 ‘
= 2
=1 )

o L )

1
T 508 - ﬂ
£%
2 506 -
s VIIRS (Suomi NPP)
2 204 4
m O
- Q
£ &84 u 1\ Wi

0 i

1

|
T 508 4 W H
-
o
2 506 -
e MERIS (ENVISAT)
2 204 4
59 |
2 202 1 |
|

0 L} L L3

1
T 508 4
£%
2 506 -
v o
2 804
59 OLCI (SENTINEL3)
] 0.2 1
< GJ

o
0 11—

350 450 550 650 750 850 950
Wavelength (nm)



Hyperspectral Approaches: Examples of Additional

Spectral Information
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Fig. 6. Modelled EAP R, (above) for typical dinoflagellate assemblage with effective di-
ameter of 16 um. Chl a concentrations are 1, 2, 5, 10, 20, 30, 50, 100, 150, 200 mg.m*3.
Below the shift from maximum peak reflectance height in the blue/green to the red is shown
(dotted lines), for increasing Chl a. The first derivatives of these slopes (solid lines) cross
at a Chl a of around 15 mg.m 3, the point at which the red features of high biomass re-
flectance spectra start to dominate.

Eutrophic and hypertrophic waters
contain considerable phytoplankton
scattering related signal in the 570
— 650 nm and above 680 nm.
Additional hyperspectral related
signal in these regions would be
very valuable....

Robertson Lain, L., Bernard, S., and Evers-King, H. (2014) Biophysical modelling of phytoplankton communities from first
principles using two-layered spheres: Equivalent Algal Populations (EAP) model. Optics Express, 22(14), 16745-16758..




Hyperspectral Approaches: Examples of Phytoplankton SIR
Diversity Applications....Multiple Groups
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Hyperspectral Approaches: Examples of Phytoplankton
Diversity Applications....Cyanobacteria

our future through science

Table 3. Spectral indices (x) derived from AISA reflectance spectra and their relationships to
correlation to measured phycocyanin concentration (y).

Spectral index Model R*> RMSE(ugl™
10.5(Rgo0 + Rea7) — Rezs logio(y) = 0.008x 23 0.69 30.42
PIRe47 | Reos logio(y) = -99.61x% + 218.5x — 117.8 0.62 30.92
B1R04 / Reog logo(y) = =3.137(log;0(x))? 0.47 32.46

+ 10.211log;o(x) — 6.256
M Reas logo(y) = 0.2896¢ 1%l0g;((x) 0.80 25.52

[1] Dekker (1993); [2] Schalles and Yacobi (2000); [3] Simis ef al. (2005); [4] Millie et al. (1992).

Spectral ratio
based approach
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Figure 7. Phycocyanin (PC) concentration derived by applying the relationship shown in
figure 5 to the calibrated AISA imagery of Geist Reservoir (see figure 1 for its location). Note
that a PC ‘hot spot’ is located on the left side of the figure, and the high PC value along the shore
of this reservoir is due to the effect of the bottom reflection, which cannot be accounted for by
the relationship in figure 5.

Lin Li , Rebecca E. Sengpiel , Denise L. Pascual , Lenore P. Tedesco, Jeffrey S. Wilson & Emmanuel Soyeux (2010)
Using hyperspectral remote sensing to estimate chlorophyll-a and phycocyanin in a mesotrophic reservoir,
International Journal of Remote Sensing, 31:15, 4147-4162




Hyperspectral Approaches: Examples of Phytoplankton
Diversity Applications....Cyanobacteria
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Fig. 4. Results from the SLH algorithm derived from Hydrolight simulations of cyanobacteria, with varying concentrations of chlorophyll and backscattering ratios. SLH is relatively insen-
sitive to changes in chlorophyll. Vertical gray lines indicate MASTER bands used for SLH.

Kudela, R.M., et al., Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters, Remote
Sens- ing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.01.025




Hyperspectral Approaches: Examples of Phytoplankton
Diversity Applications....Phaeocystis
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Figure 4. (a) Mean and (b) second derivatives spectra of R(\) associated with the group 1 (P. globosa),
group 2 (mixed), and group 3 (diatoms) (see Table 1).

Lubac, B., H. Loisel, N. Guiselin, R. Astoreca, L. Felipe
Artigas, and X. Mériaux (2008), Hyperspectral and
multispectral ocean color inversions to detect Phaeocystis
globosa blooms in coastal waters, J. Geophys. Res., 113,
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IOP Budget Based Assemblage Contribution to the Ocean Colour Signal
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Phytop%aznkton component from EAP two-layered sphere model. Other components:
bbs(x)=7f “and a, d()»):ag d(400)exp[—0.012*(7»—400)] where a_ (400)=0.15*log(Chl)+0.25

gd

Assemblage related
sensitivity in
reflectance is highly
dependent on algal
biomass, as
determined by the
relative algal
contribution to the
|IOP budget...

-

after Robertson Lain, L., Bernard, S., and Evers-King, H. (2014) Biophysical modelling of phytoplankton communities from first
principles using two-layered spheres: Equivalent Algal Populations (EAP) model. Optics Express, 22(14), 16745-16758..




Phytoplankton size and the changing hyperspectral signal GIR
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reflectance over modelled size range (suitable for biomass based on allometry) at a) 0.1, 1 b) 3 ¢) 10 and d) 100 mg/
m3 [Chl a]. The central solid line represents the modelled value plus expected measurement uncertainties at

effective diameter = 10 microns

An Equivalent Algal Population model coupled to Ecolight allows description of the reflectance
range associated with assemblage effective diameters from 4 to 40 um. Case 1 waters only, i.e.

the best case scenario....

after Evers-King, H., Bernard, S., Robertson Lain, L., and Probyn, T. A. (2014) Sensitivity in reflectance attributed to
phytoplankton cell size: forward and inverse modelling approaches. Optics Express, 22(10), 11536-11551.




Phytoplankton size and the changing hyperspectral signal
with increasing biomass GIR
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Fig. 2. Ranges of modelled R, to variations in D, sy and [Chl a], under high b, and high
agq conditions. Note the differences in scale, where (b - ES) shows much higher Ry values
than (a - REFA). Dots indicate R, associated with smallest cells. ¢) Shows example ranges
of spectral R, at selected [Chl a] across the modelled size range using ES.

Note that in highly scattering waters the size related signal is very much reduced.....

Evers-King, H., Bernard, S., Robertson Lain, L., and Probyn, T. A. (2014) Sensitivity in reflectance attributed to
phytoplankton cell size: forward and inverse modelling approaches. Optics Express, 22(10), 11536—-11551.




Phytoplankton ultrastructure and the changing
hyperspectral signal with increasing biomass

GSIR
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Fig. 9. R modelled at various concentrations of Chl a showing
the difference between vacuolate (solid lines) and non-vacuolate
(dotted lines) populations of M. aeruginosa. Vacuolate cells were
modelled with shell 1+e of 1.12 and Vg =50 %. Non-vacuolate cells
were homogeneous cells with 1+¢ of 1.080. The values for a¢(440)
and ag(440) were constant at 0.5 and 1.5 m_l, respectively. For
more details, see the text.

our future through science

Vacuoles greatly
increase the scattering
for equivalent cells —
this is a clear and easily
used signal, at least for
high biomass inland/
coastal waters...

Matthews, M. W. and Bernard, S.: Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent
optical properties of Microcystis aeruginosa, Biogeosciences, 10, 8139-8157, doi:10.5194/bg-10-8139-2013, 2013.




Phytoplankton accessory pigments and the hyperspectral GIR
signal with increasing biomass: a brief experiment...
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thick lines represent Mesodinium i.e.
phycoerythrin containing cells, spectrally
variable phase functions based on the
backscattering probability used...

Robertson, unpublished
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Phytoplankton accessory pigments and the hyperspectral GIR

signal with increasing biomass: a brief experiment...
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1) What do you think are the driving science questions in your sub-discipline that will guide your community in the
coming decade?

Better understanding of the drivers and effects of variable primary production across oceanic and aquatic systems, and the
importance of resolving phytoplankton community structure, preferably at the submeso- and event scale...

2) How will hyperspectral data help to address those questions?
Offering more information on phytoplankton community structure, if we can better understand the causali

3) How does ‘scale’ (e.g., spectral, spatial, and/or temporal) affect your ability to address these science questions? What
is the smallest measurement ‘scale’ needed to address your science?

The most challenging scale is the the temporal/spatial, probably the daily or less revisit /300m spatial resolution boundary
i.e. constellation/geostationary approaches

4) What are the common challenges across sub-disciplines in working with hyperspectral data?
Engineering: quality of radiometry & spatial/temporal aspects. Science : better understanding of signal variability and
constraints, robust error handling needed.

5) How do we coordinate and integrate common algorithm development efforts?
Community platforms for collaboration/comparison; shared measured/synthetic data sets; realise that the atmospheric
correction algorithms currently more of a constraint than the in-water algorithms

6) Are there any observational or programmatic gaps across the planned hyperspectral missions?
Yes, routine and well constrained phytoplankton community structure measurements

7) What other space-based measurements or modeled data, done in parallel to hyperspectral measurements, would you
like to have to obtain more out of ocean color?
Hydrodynamic/biogeochemical/particle models using the same bio-optical models to allow convergence at Lw level



