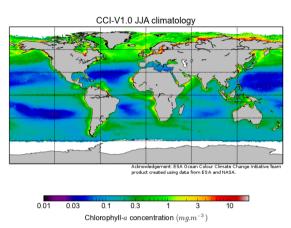


Advancing Global Ocean Colour Observations


Challenges of System Vicarious Calibration for non-standard atmospheric correction

Constant Mazeran⁽¹⁾, Carsten Brockmann⁽²⁾, François Steinmetz⁽³⁾, Marco Zühlke⁽²⁾ & the ESA OC-CCI consortium

⁽¹⁾Solvo, ⁽²⁾Brockmann Consult, ⁽³⁾Hygeos

Context: ESA OC Climate Change Initiative

Long-term global EO archive of Ocean Colour ECV: ρ_{w} , chl, IOP

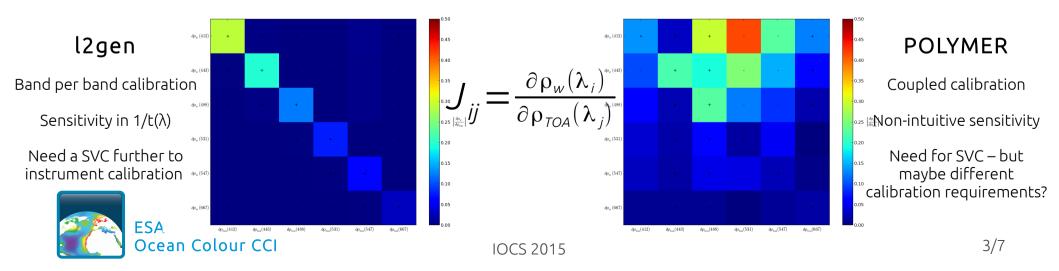
Phase 2 started in February 2014: continuous update of data products following review of climate researchers + extension to new sensors

Past and in-flight sensors currently considered: SeaWiFS, MODIS, MERIS, VIIRS. OLCI planned for 2016

Two types of atmospheric corrections (AC) considered:

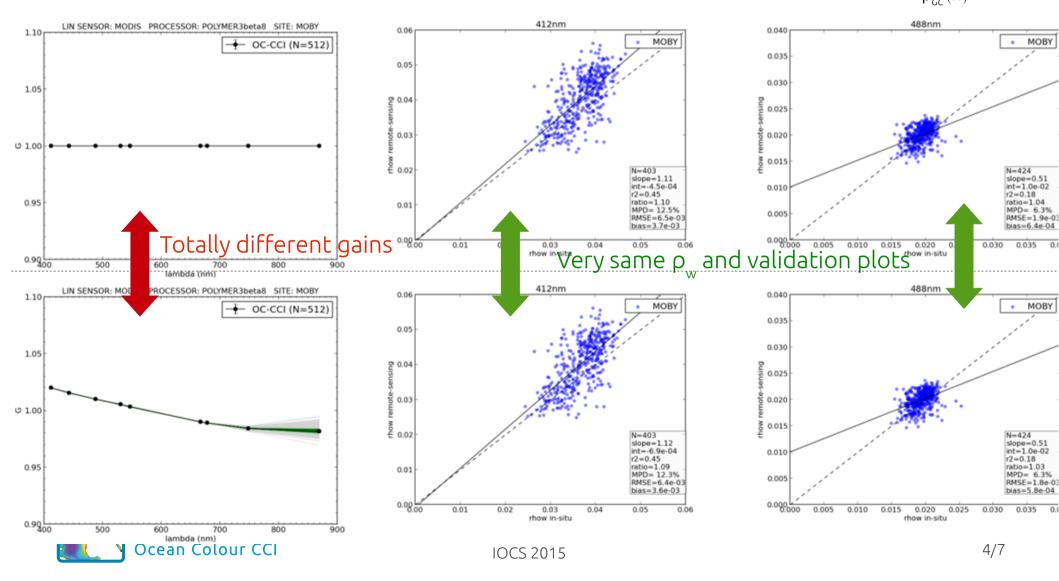
- "Standard/historical AC", e.g. NASA-l2gen $\rho_w(\lambda_{VIS}) = \frac{\rho_{gc}(\lambda_{VIS}) \rho_{atm}(\text{from }\lambda_{NIR})}{t_d(\text{from }\lambda_{NIR})}$
- "Non standard AC", based on a marine model and full spectrum inversion e.g. HYGEOS-POLYMER, HZG-NN, FUB-SIACS $\rho_w(\lambda_{VIS}) = \frac{\rho_{gc}(\lambda_{VIS}) - \rho_{atm}(\text{from all } \lambda)}{t_{s}(\text{from all } \lambda)}$

System Vicarious Calibration (SVC): post-launch mean to harmonise OC radiometry across all missions


What does SVC tell us?

SVC formalism considers {sensor+algorithms} as a whole and is thus a very pragmatic way to:

- Specify requirements on L1 radiometry (system input) by requirements on ρ_w (system output)
- Detect (or at least validate) any sensor drift at ρ_{w} level, through analysis of long-term time series


Most generic formulation of the SVC problem, for a given algorithm, observation and reference is: With $\rho_w = F(\rho_{TOA})$, find g such that $F(g * \rho_{TOA}) = \rho_w^{REF}$ for all bands

Specificity of spectral matching AC

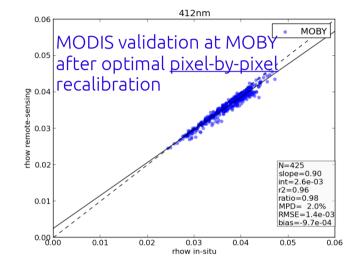
By construction POLYMER inversion is invariant to any calibration following $g(\lambda) = 1 + \frac{c_0 T_0(\lambda) + c_1 \lambda^{-1} + c_2 \lambda^{-1}}{\rho_{gc}(\lambda)}$

Feasibility of SVC?

The strict SVC problem cannot be solved, unless there exists IOPs such that $\rho_w^{REF}(\lambda) = \rho_w^{MOD}(\lambda, IOPs)$ for all λ

The best we can do is a SVC in a *least-square sense*:

With $\rho_w = F(\rho_{TOA})$, find g to minimise $||F(g * \rho_{TOA}) - \rho_w^{REF}||$


Standard AC

- Gains always exist
- Gains are unique <u>after NIR calibration</u>
- Gains can be computed explicitly at each band
- Gains yield to a perfect match with reference data, at all bands ESA Ocean Colour CCI

Spectral matching (POLYMER)

- "True" gains exist only if $\rho_{\scriptscriptstyle W}^{\scriptscriptstyle MOD}$ fit reference data
- Infinity of gains are possible
- Gains are computed by a non-linear spectrally coupled system
- Gains only yield to an approximate match with reference data, in a least-square sense. Errors vary with bands

IOCS 2015

Findings from POLYMER SVC at MOBY

SVC gains have no meaning per se, but comparison between two algorithms can provide information

Conclusion

- Spectral matching ACs are more and more used by the OC community, cf. OC-CCI
- Such algorithms ask new questions in term of calibration requirements (interband vs absolute)
- System Vicarious Calibration can bring answers but needs a new perspective:
 - Link between TOA and BOA does not follow classical OC formulation cf. Jacobian matrix
 - Gains are spectrally coupled and cannot be computed by the standard method
 - Gains are not always unique
 - The strict SVC problem is not solvable \rightarrow define SVC in a least square sense
- SVC of spectral matching AC remains meaningful and useful to bring an extended number of data

Acknowledgements

This study is funded by the European Space Agency within OC-CCI Phase2

MOBY data are provided by Kenneth Voss (University of Miami) and Kent Hughes (NOAA/NESDIS)

SeaWiFS and MODIS data are provided by NASA/OBPG