Status of MERIS Calibration for 4th reprocessing

Ludovic Bourg

International Ocean Colour Science Meeting
San Francisco, 18 June 2015
Overview

- Instrument overview
- In-flight calibration hardware
- Overall calibration strategy
 - 3rd reprocessing radiometric validation results
- Calibration processing chain
 - Radiometric model
 - Processing chain
 - Why a temporal model?
 - Gain modelling
- Some results from whole mission reanalysis
 - Reference diffuser stability
 - Impact on gain drift determination
- Conclusion
Instrument overview

- Push-broom imaging spectrometer, 5 fan-arranged cameras
- CCD sensing with [390,1040] nm spectral range
- Up to 45 programmable µchannels relaxed into 15 channels
- **Self-calibrating** using well-characterized Sun diffusers as secondary standards
- Spectral calibration using dedicated on-board diffuser
In-flight Calibration hardware

Calibration wheel with 5 positions:

- Shutter: dark offset (**calibration zero**), before every diffuser acquisition
- Radiometric diffuser: **calibration gains** (every 2 weeks)
- Reference radiometric diffuser: **ageing of nominal diffuser** (every 3 months)
- Spectral diffuser: spectral calibration at 2 wavelengths (every 3 months @520nm, every 6 months @ 408nm)

- All calibrations near orbital South pole, where Sun aligns with baffle
Overall Calibration Strategy

On-ground characterisation

+ In-flight calibration measurements

+ Processing, analysis and modelling

= Self standing absolute calibration for the EO processing chain

Validated by vicarious methods
3rd RP Radiometry Validation results

(from B. Fougnie, CNES, MERIS QWG, June 2013)

General comparison of all results from various methods

- Good consistency between all results for all methods
- Very good accordance for
 - 412-443-490-510 within 1% between the 3 methods
 - 753-778-865-885 within 0.5% between the 2 methods
\[
X_{b,k,m,t} = NL_{b,m} \left[A_{b,k,m}^0 \cdot \left(L_{b,k,m,t} + SL_{b,k,m,t} \left(L_{*,*,*,*}^* \right) \right) + \right.
\]

\[
\left. Sm_{b,k,m,t} \left(L_{*,k,m,*}^* + SL_{*,k,m,*}^* \left(L_{*,*,*,*}^* \right) \right) + g_C \left(T_{t}^{CCD} \right) \cdot C_{b,k,m}^0 \right] + \epsilon
\]

Where:

- \(b = \text{band}, \ k / m = \text{pixel / camera}, \ t = \text{time}, \ (\ast = \text{whole/partial domain}) \)
- \(X_{b,k,m,t} \) is the OLCI raw sample
- \(NL_{b,m} \) is a non-linear function
- \(T_{t}^{CCD} \) is the temperature of the CCDs
- \(g_C \left(T_{t}^{CCD} \right) \) is a dimensionless temperature correction function
- \(A_{b,k,m}^0 \) the "absolute radiometric gain" in counts/radiance unit
- \(L_{b,k,m,t} \) the spectral radiance distribution in front of OLCI
- \(Sm_{b,k,m,t} \) the smear signal, due to continuous sensing of light by OLCI
- \(C_{b,k,m}^0 \) the calibrated dark signal (possibly including an on-board compensation)
- \(SL_{b,k,m,t} \) a linear operator representing the stray light contribution to the signal
- \(\epsilon \) is a random process representative of the noise and measurement errors.
Radiometric model applies to Calibration measurements

\[
X_{b,k,m,t}^{\text{Cal}} = \text{NL}_{b,m} \left[A_{b,k,m}^0 \left(L_{b,k,m,t}^{\text{Cal}} + SL_{b,k,m,t}^{\text{Cal}} (L_{*,*,*,*}^{\text{Cal}}) \right) + Sm_{b,k,m,t} (L_{*,k,m,*}^{\text{Cal}} + SL_{*,k,m,*}^{\text{Cal}} (L_{*,*,*,*}^{\text{Cal}})) \right] + \varepsilon
\]

\[
A_{b,k,m}^0 = \left(\text{NL}_{b,m}^{-1} \left(X_{b,k,m,t}^{\text{Cal}} \right) - Sm_{b,k,m,t} (L_{*,k,m,*}^{\text{Cal}} + SL_{b,k,m,t}^{\text{Cal}}) - g_C \left(T_{t}^{\text{CCD}} \right) \cdot C_{b,k,m}^0 \right) \right)_{t \in \{\text{cal}\}}
\]

With:
- \(X^{\text{Cal}} \) from Sun diffuser measurements
- \(C^0 \) from dedicated measurements (with shutter)
- \(Sm \) from dedicated band (virtual, lit only during CCD frame transfer)
- \(L^{\text{cal}} \) from characterised/modelled diffuser BRDF + in-flight geometry + \(E_0 \) at MERIS bands & pixels (from Spectral characterisation/model)
- \(SL \) from L + characterised/modelled convolution kernels
- \(gC \) from characterisation
- \(NL^{-1} \) from characterisation
Calibration chain summary
Calibration chain summary (short term)
Why using a Gain model

- Allows smooth long-term trends correction
- BRDF model does not fully capture dependency with Sun azimuth (±0.5%)

On-ground:
BRDF model residuals for 2 extreme SAA

In-flight:
Relative gain variations: extreme SAA gains over central one

Selecting “best” SAA ensures better accuracy.
Principle of Gain modelling

- Model is basically $G(t) = G(t_0) \cdot f(t-t_0)$
- Correcting Diffuser 1 (and 2!) for ageing allows to measure consistent gains from both diffusers
- Gain long-term drift (Instrument Degradation) captured from D1 (more data, good spread in SAA domain)
- Validated on D2
- Gain at reference time can be derived from D1 or D2
 - D1 pros: minimize speckle
 - D2 pros: minimize discrepancies at camera interfaces
- Stability with time and view angle verified over Antarctica
Some results, 1

- Ageing correction is essential for accurate gain drift modelling
- Assumption: ageing proportional to cumulated exposure (D2 exposed ~10 times less)
- Ageing measured by evolution of D1/D2 ratio, shows up to ~2% variation (in the blue)

→ D2 ageing no longer negligible
Neglecting D2 ageing has a small absolute impact (<0.2%) but degrades overall consistency: D1 and D2 do not “see” the same instrument degradation anymore: example of camera 2.

Raw time evolution of ageing corrected gains, from D1 (solid) and D2 (symbols)

D2 ageing ignored

D2 ageing accounted.
(Vertical scaled shrunk to fit left figure)

10 years

3rd RP Cal data
Still work in progress, sorry!

Here you should see an illustration of the impact of ageing revision 4th RP model, in particular over the 3rd RP extrapolation period.

Coming soon…

D2 ageing ignored

10 years

3rd RP Cal data

3rd RP model

used in extrapolation

4%
Conclusion

Well characterized on-board diffusers are extremely accurate calibration “sources”.

As for any space borne item ageing is a concern and shall be closely monitored.

A reference diffuser has proven to be a reliable monitoring device

- unfrequently exposed diffusers seem to degrade fairly linearly
- time sampling is important to minimize geometry effects
- But accurate ageing rate determination requires time
Thank you for your attention