

Intercomparison of PFT Algorithm and Earth System Model Phenology

Tihomir S. Kostadinov

Dept. of Geography and the Environment, University of Richmond, VA, USA

Co-authors: Anna Cabré, Harish Vedantham, Irina Marinov, Astrid Bracher, Robert Brewin, Annick Bricaud, Nick Hardman-Mountford, Takafumi Hirata, Amane Fujiwara, Colleen Mouw, Shovonlal Roy, Julia Uitz

> International Ocean Color Science Meeting San Francisco, CA

> > June 16, 2015

Participating Algorithms

Satellite Algorithms (Optics-based approach)

Bracher et al, BG, 2009 (PhytoDOAS) (SCIAMACHY!)	Bricaud et al., GBC, 2012 <mark>(CB06)</mark>	Fujiwara et al., BG, 2011 <mark>(FUJI11)</mark>	Kostadinov et al., JGR, 2010 (KSM09)	Roy et al., RSE, 2013 (ROY13)
Diatom Chi	Large, Small	Micro, Nano,Pico	Micro, Nano,Pico	Micro, Nano,Pico

- PHYSAT (Alvain et al. 2005,2008) → Frequency of diatom detection
- Mouw and Yoder (2010) (MY10) → S_{fm} (fraction of large)

Satellite Algorithms (Abundance-based approach)

Brewin et al. EM, 2010	Hirata et al., BG, 2011	Uitz et al., JGR, 2006
(BR10)	(OC-PFT)	(UITZ06)
Micro, Nano, Pico	Micro, Nano, Pico, Diatom, Prymnesiophyte, Picoeukaryote, Cyanobacteria, Prochlorococcus	Micro, Nano,Pico

- SeaWiFS OC4v6 Chl
- SeaWiFS PAR

Slide courtesy of Taka Hirata with modifications by T.S.K.

Participating CMIP5 Models

Model	Nutrients	Ecology module	Phytoplankton variables	References
CESM1-BGC	P, N,Fe,Si	MET	diatom, nanophyto, diazotroph	Moore et al. (2004), Moore et al. (2006)
GFDL-ESM2G	P,N,Fe,Si	TOPAZ2	large separated into diatoms and non- diatom, small cyanobacteria, diazotroph	Dunne et al. (2013)
GFDL-ESM2M	P,N,Fe,Si	TOPAZ2	large separated into diatoms and non- diatom, small cyanobacteria, diazotroph	Dunne et al. (2013)
HadGEM2-ES	N,Fe,Si	Diat- HadOCC (NPZD)	diatom, non-diatom	Palmer and Totterdell (2001)
IPSL-CM5A-MR	P,N,Fe,Si	PISCES (from HAMOCC5)	Diatoms, nanophyto	Aumont and Bopp (2006), Séférian et al. (2013)
GISS-E2-H-CC	N, Fe, Si	NOBM	Diatoms, chlorophytes, cyanobacteria, coccolitophores	Gregg (2008)
GISS-E2-R-CC	N, Fe, Si	NOBM	Diatoms, chlorophytes, cyanobacteria, coccolitophores	Gregg (2008)

Variable used: C biomass due to diatoms

Monthly data for 2003 – 2007 were used for both satellite data and climate models

Variables on Different Scales

Motivation for Phenology Intercomparison

- PFT algorithms retrieve variables that:
 - can be defined differently and have various units
 - even with the same units can be on different scales due to different algorithm assumptions and methodologies
- Small phase changes can make comparisons at a given moment in time meaningless (e.g. Platt et al., 2009)
- Comparing emergent properties of the ecosystem such as phenology is more meaningful

Phenology via DFT

$$\{a_n + b_n \mathbf{i}\}_k = \sum_{n=0}^{N-1} x_n e^{\frac{-2\pi i^* k^* n}{N}}$$

- Step 1: Obtain Fourier coefficients
- Step 2: Use amplitudes of *f* = 1 yr⁻¹ and its harmonics to model seasonal cycle

$$\hat{\mathbf{x}} = a_o + a_n \cos(2\pi ft) - b_n \sin(2\pi ft); f = [1;6], f \in \mathbb{Z}$$

• Step 3: Peak analysis

Isolate most prominent peaks & derive:

- Seasonal amplitude
- % seasonal variance
- Month of maximum
- Duration
- Secondary peak analysis

Percent Seasonal Variance Ensembles

10 PFT Algorithms

7 CMIP5 Models

Data – Models, RED = Data Has Larger % Variance

Models exhibit "cleaner" seasonal cycles in most places, especially high latitudes.

Data map generally agrees w/ Sapiano et al. (2012)

Month of Maximum Ensemble Means

10 PFT Algorithms

7 CMIP5 Models

Data – Models, RED = Data leads

Data generally peaks 1-2 months before models

Banded structures in Southern Ocean

Only meaningful if percent seasonal variance is high!!!

ferences Month of Maximum

45E

90E

135E

180E

135W

90W

45W

0 E

45E 90E 135E 180E 135W 90W 45W

0 F

RED = Ensemble leads

Abundance-based approaches & those parameterized with Chl (BR10, OC-PFT, UITZ06,) are most similar to it & drive the mean.

PhytoDOAS, ROY13 & FUJI11 are most different

ROY13 & KSM09 are very different in Southern Ocean

Only meaningful if percent seasonal variance is high!!!

Secondary Blooms

C) Fraction of CMIP5 models with a single annual peak

Three distinct bands:

- 1) Single peak at subtropics near ~30° N/S
- 2) Double peak (fall bloom) in temperate zones ~45 o N/S
- 3) Single peak at subpolar locations

Consistent with *Platt et al.* (2009) model

Thank You! Questions?