In situ observation capabilities and strategies for phytoplankton composition

to support development and validation of satellite PFT algorithms

Heidi M. Sosik

IOCS 2015 – Breakout "Remote Sensing of Phytoplankton Composition – Possibilities, Applications and Future Needs" San Francisco, CA 16 June 2015

Overview

Assessing State-of-the-Art

- Strengths / Limitations
 - HPLC pigments
 - Microscopy
 - Flow Cytometry
 - Genetic Analysis
- Cross-cutting challenges
 - Space/time mis-match with satellite observations
 - Abundance vs. biomass
 - Cell size characterization & biovolume estimation
 - Biomass metrics
 - biovolume vs. carbon vs. pigment / chlorophyll

IOCCG PFT Report No. 15 Chapter 2: In situ methods of measuring phytoplankton functional types. Sosik, Sathyendranath, Uitz, Bouman & Nair.

HPLC - High Performance Liquid Chromatography

"Chemotaxonomy" (e.g., Mackey et al. 1996)

Ratios of accessory pigments

➔ infer relative contribution of major groups to total chlorophyll

Diatoms Dinoflagellates Prymnesiophytes Pelagophytes Cryptophytes Chlorophytes Prochlorophytes Cyanobacteria

Figure credit: Joyner and Paerl (UNC)

HPLC

Strengths

Highly precise Detection limits adaptable Routine sample collection and preservation Biomass assessment as pigment Taxonomic expertise not required

Limitations

Specialized equipment and technical needs
Ambiguities in marker pigments
Sensitive to assumptions about pigment ratios (inter- and intra-group variability)
Taxonomic detail modest (group level)
Cell size only indirectly inferred

Microscopy

Light microscopy "Utermöhl method" preserved samples settled in chamber cell counts across known size fields

- Effective for microplankton

settling chambers

inverted microscope

Epifluorescence microscopy filtered samples exploits inherent fluorescence chlorophylls phycobiliproteins

- Effective for picoplankton

Continuous Plankton Recorder

phytoplankton by light microscopy directly on preserved sample silk

Electron microscopy

provides adequate detail for some difficult taxa trade-off increased cost & time, reduced throughput

Microscopy

Strengths

Taxonomic detail high Detection limits adaptable Cell size and taxon accessible

Limitations

Taxonomic expertise required Time consuming Subject to preservation artifacts / biases Multiple methods for full size range Many small cells difficult to identify

Flow Cytometry

+ sorting flow cytometry for specialized analysis

Flow Cytometry

Strengths

Analysis automatic and rapid Precise and quantitative Some taxonomic detail for selected groups Optical cell size estimation possible In situ instruments available

Limitations

Many taxa not separable Relatively expensive / delicate instruments Requires some user expertise Specialized methods / instruments for full size range

Genetic Analysis

Wide range of methods, selection of interest:

Clone Libraries

PCR-based assay presence of sequence types, whether known or unknown

Microarrays

hybridization to selected specific sequences presence/absence/relative abundance for every sequence type on array faster, higher throughput

High throughput sequencing, ribosomal marker surveys

PCR-based assay, no cloning (lower bias than libraries) presence / relative abundance, whether known or unknown sequence everything, search for info of interest

Metagenomics, transcriptomics, proteomics

presence / relative abundance sequence everything, search for info of interest potential for functional information many challenges for eukaryotes Sequence targets Typical diversity markers 16S/18S rRNA, hypervariable regions, etc. Other functional genes C fixation, N assimilation, etc.

Genetic Analysis

Strengths

Taxa can be targeted with high degree of specificity Particular functions can be targeted directly High throughput methods exist Specialized taxonomic expertise not required In situ tools emerging

Limitations

Probe / primer availability can be limited No direct cell size information Method development and testing time consuming Methodological biases can be difficult to characterize Complex interpretation Dependence on sequence database content

Genetic Analysis

Clone libraries English Channel Monterey Bay

Bhadury & Ward 2009

rbcL LSU of RUBISCO gene

NR nitrate reductase gene

(NR primer – diatom bias)

Composition estimates depend on gene target

Bolidophyceae
Dictyophyceae
Cryptophyceae
Pelagophyceae
Dinophyceae
Prymnesiophyceae
Raphidophyceae
Bacillariophyceae

Cryptophyceae
 Dinophyceae
 Chlorarachniophyceae
 Prymnesiophyceae
 Bacillariophyceae

Overview

Assessing State-of-the-Art

- Strengths / Limitations
 - HPLC pigments
 - Microscopy
 - Flow Cytometry
 - Genetic Analysis
- Cross-cutting challenges
 - Space/time mis-match with satellite observations
 - Abundance vs. biomass
 - Cell size characterization & biovolume estimation
 - Biomass metrics
 - biovolume vs. carbon vs. pigment / chlorophyll

Biomass estimation

Microscopy

Cell dimensions \rightarrow cell volume \rightarrow cell C

Relies on standard shape assumptions; literature-based C:volume relationships, time-consuming manual sizing of relatively few cells

• Flow cytometry, automated cell imaging

Cell dimensions \rightarrow cell volume \rightarrow cell C

similar approach, automated analysis provides quantitative information for many cells

Biomass estimation

Nano/microplankton

Imaging FlowCytobot Olson and Sosik 2007

Volume from image analysis "distance map" approach

Sosik and Olson 2007 Moberg & Sosik 2012

Biomass estimation

Apr

Jan

Jul

Oct

Jan

Individual cells \rightarrow Taxa \rightarrow Communities

Biomass estimation – comparing metrics

Implied Carbon : Chl variations very large diatoms ~10 dinoflagellates ~25 cyanobacteria ~250 **Discussion of Future Directions**

HPLC / Microscopy / Flow Cytometry / Genetic Analysis

Cross-cutting challenges

- Space/time mis-match with satellite observations
- Abundance vs. biomass
- Cell size characterization & biovolume estimation
- Biomass metrics
 - biovolume vs. carbon vs. pigment / chlorophyll

Which metrics will best serve which questions? What methods are required for those metrics? Recommendations for observations going forward?