esa

European Space Agency

Ocean Colour Activities at ESA

Philippe.Goryl

Philippe.Goryl@esa.int

Craig Donlon Craig.donlon@esa.int

European Space Agency

Assets in orbit

Outline

- MERIS 4th reprocessing
- Sentinel-3: OLCI status and plan
- Sentinel-2 for OC ?
- CCI Program Ocean Colour
- FRM4OC
- SEOM program
- Conclusion

3

MERIS 4° reprocessing

- ENVISAT : March 2002 April 2012 → 10 years of data
- MERIS is composed of five cameras disposed side by side, each equipped with a pushbroom spectrometer. These spectrometers use two-dimensional CCDs
- \rightarrow 15 wavelengths (from 412.5 nm to 900 m), swath 1150 km
- → two spatial resolutions: Reduced Resolution (RR) 1 km, Full Resolution (FR) 300 m
- → systematic acquisition, processing in RR, Regional acquisition (land and coast) in FR
- 3 onboard calibration devices
- 3 reprocessing campaigns (RR) were done during the mission lifetime
- Data (RR and FR) free available at:

https://earth.esa.int/web/guest/data-access/online-archives

 Documentation (inc. ATBD, DPM, validation) available at:

https://earth.esa.int/web/sppa/mission-performance/esamissions/envisat/meris/products-and-algorithms/productsinformation

 4th reprocessing in preparation. Global reprocessing L1 and L2, RR and FR

MERIS 4° reprocessing

Chl 4th reprocessing – better cloud masking

Chl 3rd reprocessing – cloud masking issue

Sentinel-3 format: XML + Netcdf

Level 1B : Calibration update, ortho-geolocation

Level 2:

- Better classification
- Better BPAC
- Aerosol Model aligned with NASA GSCF
- Better Water vapour product
- Pressure adjustment
- Aerosol over land
- Products provided with uncertainties per pixel

Reprocessing will start early 2016 – Data will be available by spring 2016.

Documentation and validation report will be available at: https://earth.esa.int/web/sppa/mission-performance/esa-missions/envisat/

MERIS 4° reprocessing

ODESA and MERMAID will be updated

- The ODESA system provides the users with a complete level 2 processing environment for the MERIS instrument (as well as for the future ESA optical sensors on board Sentinel 3.)
- Source code, embedded in an efficient framework for testing and for validation activities
- Validation facilities including match-up processing & analysis, data set selection & analysis

http://www.odesa-info.eu/

Sentinel-3 (and Sentinel-2) for OC

Sentinels provide decade-long observations

Sentinel-3 : Ocean and Land Colour Imager (OLCI)

- The Sentinel-3 Mission, being part of Copernicus Space Component, is an operational mission in high-inclination, low Earth orbit.
- □ Full performance achieved with 2 satellites in orbit (S-3A,-3B)
- Sentinel-3 implements 3 core missions to deliver continuity to
 - Sea and land color data, through OLCI (Ocean and Land Color Instrument) at least at the level of quality of the Medium Resolution Imaging Spectrometer (MERIS) instrument
 - □ Sea and land surface temperature, through the SLSTR (Sea and Land Surface Temperature Radiometer) at least at the level of quality of the Advanced Along-Track Scanning Radiometer (AATSR) instrument
 - Sea surface topography data, through a Topo P/L including a Ku-/C-band Synthetic Aperture Radar Altimeter (SRAL) and a bi-frequency MicroWave Radiometer (MWR), at least at the level of quality of the Envisat Radar Altimeter (RA-2) system
- □ In addition, the payload design will allow
 - □ Data continuity of the Vegetation instrument (on SPOT4/5),
 - □ Enhanced fire monitoring capabilities,
 - Along-track SAR for coastal zones, in-land water and seaice topography

Main satellite characteristics

- 1250 kg maximal mass
- Volume in 3.89 m x 2.202 m x 2.207 m
- •7.5 years lifetime (fuel for 5 add. years)

Observation Data Management

- •1 contact per orbit with Svalbard Ground Station
- 3h delivery timeliness (from satellite sensing)

→ Current launch window: End October 2015 (shipping to launch 20th Sept. 2015)

Export licenses for S3A launch from Russia granted

Readiness

- Sentinel-3A AIT progressing: Full satellite (including OLCI) integrated since early July 2014
- Mechanical Test Campaign successfully completed by end 2014
- SLSTR-FM2 most tests completed: electrical, mechanical, functional as well as VIS radiometric calibration; radiometric calibration on SWIR and TIR concluded;
- OLCI defective camera detected in Oct 2014 and replaced in Nov; root cause found; replacement of all OLCI-A cameras with those produced for OLCI-B scheduled in July
- Sentinel-3B Assembly, Integration and Test ongoing (*launch Spring 2017 – 18 months after S3A*)

Sentinel-3A in TAS test facilities In April 2015

		Revisit at Equator	Revisit for latitude > 30°	Spec.	
Ocean Colour (Sun-glint	1 Satellite	< 3.8 days	< 2.8 days	< 2 days	
free, day only)	2 Satellites	< 1.9 days	< 1.4 days	< 2 uays	□SRAL (>2 km) and MWR (20 km) nadir track
Land Colour (day only)	1 Satellite	< 2.2 days	< 1.8 days	< 2 days	The second s
	2 Satellites	< 1.1 day	< 0.9 day		□1400 km SLSTR (nadir)
SLSTR dual view (day	1 Satellite	< 1.9 days	< 1.5 days		□740 km SLSTR (oblique) □1270 km OLCI
and night)	2 Satellites	< 0.9 day	< 0.8 day	< 4 days	A Company of the second

- Constellation of 2 Sentinel-3 Satellites in the same orbital plane with an offset of 180° required for satisfying revisit and coverage requirements
- Furthermore, 2 satellites in-orbit increases robustness of operational service
 - □ No interruption of operational services in case
 - 11 of one satellite failure

Orbit type	Repeating frozen SSO
Repeat cycle	27 days (14 + 7/27 orbits/day)
LTDN	10:00 hr
Average altitude	815 km
Inclination	98.65 deg

OLCI Pushbroom Imaging Spectrometer – Similar to MERIS with key Improvements:

- more spectral bands (from 15 to 21) between 400-1020 nm
- broader swath: 1270 km
- reduced sun glint by camera tilt in west direction (12.20°)
- Absolute (relative) accuracy of 2 (0.5) %
- Full res. 300m acquired over land and ocean
- Reduced res. 1200m binned on ground (L1B)
- improved characterization, e.g. straylight, camera boundary characterization
- improved coverage Ocean < 4 days, with 2 satellites < 2 days</p>
- Timeliness: 3 hours NRT Level 1 and level 2 products
- 100% overlap with SLSTR

⇒L1 Products TOA radiance ortho-geolocated

- ⇒L2 OC products: surface reflectance, Chlorophyll (2 algorithms), TSM, KD490, Colour Dissolved Matter Absorption 443 nm, PAR, AOD, Angstrom, WV
- ⇒Uncertainties per pixel provided
- ⇒EUMETSAT is doing Marine Production ⇒ESA is doing Land Production ⇒L1B¹² is common to ESA and EUMETSAT

Channel	Centre Wavelength (nm)	Approx. Band (nm)	Band- width (nm)	Signal to Noise Ratio*	Application	
01	400	392.5- 407.5	15	2180	Aerosol correction, improved water constituent retrieval	
02	412.5	408-418	10	2050	Yellow substance and detrital pigments (Turbidity).	
O3	442.5	437·5- 447·5	10	1810	Chl absorption max., Biogeochemistry, Vegetation	
04	490	485-495	10	1540	High Chl, Other pigments	
O5	510	505-515	10	1490	Chl, Sediment, Turbidity, Red tide.	
06	560	555-565	10	1280	Chlorophyll reference (Chl minimum)	
O 7	620	615-625	10	1000	Sediment Loading	
08	665	660-670	10	880	Chl (2 nd Chl abs. max.), Sediment, Yellow Substance / Vegetation	
09	673.75	670.5- 678	7.5	705	For improved Fluorescence retrieval and to better account for Smile together with the bands 665 and 680nm	
010	681.25	677.5-685	7.5	750	Chl fluorescence peak, red edge	
O11	708.75	703.75- 713.75	10	790	Chl fluorescence baseline, red edge transition.	
012	753.75	750-757.5	7.5	600	O2 absorption /Clouds, vegetation	
013	761.25	760-762.5	2.5	230	O2 absorption band/Aerosol corr.	
014	764.375	762.5- 766.25	3.75	300	Atmospheric correction	
O15	767.5	766.25 - 768.75	2.5	330	O2A used for cloud top pressure, fluorescence over land.	
O16	778.75	771.25- 786.25	15	810	Atmos. Corr. / Aerosol corr.	
017	865	855-875	20	680	Atmos. Corr. / Aerosol corr., Clouds, Pixel co-registration.	
O18	885	880-890	10	400	Water vapour absorption reference band. Common reference band with SLST instrument. Vegetation monitoring.	
O19	900	895-905	10	300	Water vapour absorption / Vegetation monitoring (max. reflectance)	
020	940	930-950	20	205	Water vapour absorption, Atmos. / Aerosol corr.	
021	1020	1000- 1040	40	150	Atmos. / Aerosol corr.	

- Full Resolution Product unit is 3 mn frame Reduced Resolution Product Unit is orbit
- Documentation (technical guide, algorithm, product specification)
 - → https://sentinel.esa.int/web/sentinel/home
- User Tool
 - → https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-3

DATA POLICY:

- EU Copernicus Regulation approved (applicable from 25 April 2014) establishes principle of a full, open and free data policy
- The Copernicus Space Component Ground Segment data access is ensuring that all Sentinels core products are accessible <u>to all users</u> online

Access to Sentinel products is made available via dedicated data hubs. In addition, access to full Sentinels <u>long-term archive</u> will be made available <u>to all users online</u>

xfdu

sentinel

Product

Sentinel-2

													Feature	Description	
•	Systematic acquisition of:												Spacecrafts	2 operating in twin	
✓	All land surfaces (-56° and +84° latitude);													configuration	
	 Coastal/inland waters, Mediterranean Sea and all closed seas; 											Instrument	MSI (Multi-Spectral Instrument) operating in pushbroom principle (filter based optical system)		
Band Center λ	B1 443	B2 490	B3 560	B4 665	85 705	B6 740	87 783	842	89 865	B10 945	B11 1375	B12 1610	B13 2190	Spectral bands	13 (VIS–NIR–SWIR)
nm	745	430	500	005	705	740	765	042	805	545	1373	1010	2190		
Spectral Width	20	65	35	30	15	15	20	115	20	20	30	90	180	Spatial	10m / 20m / 60m
$\Delta\lambda$ nm														Resolution	
、.									- 1- 11					Swath	290 km
									abil nlar			or		Orbit	Sun-synchronous at 786 km
coa			-		5111		iig		nai						(14+3/10 revs per day), with
									sma romi			torti	dal		LTDN 10:30 AM
and								•		30 N			uur	Revisit	10-day with 1 satellite
				-					the r					Periodicity	5 day with 2 satellites
next	system for a systematic monitoring of coral reefs for the next decades;											Lifetime	7.25 years, extendable to 12		
								•	atial r unp				nd		years
wate	er qu	Jality							•				nd	Launch	22 June 2015 – VEGA,
wate	waters. 14												Kourou		

S2 Level-1C tiling grid, seasonal observation (SZA 82deg current baseline): Jun vs Dec and assumption on coastal acquisitions

Sentinel-2 encapsulated on the VEGA launcher in Kourou ready for launch 23rd June 01:52 GMT

Ocean Colour Component of ESA Climate Change Initiative

May 2010 bias, log_10 Chl

May 2010 RMSD, log_10 Chl

Objective: produce an uncertainty-characterised, intersensor bias-corrected, merged time series of ocean-colour products for climate research, and engage with users

V2 of the merged time series (SeaWiFS, MERIS and MODIS-A) released in March 2015.

Specific aims of this version 2.0 release:

- improves the in situ database used for uncertainty characterisation
- optimizes the uncertainty generation for the CCI data
- improves consistency in many areas, including unifying the binning/mapping processing
- improves bias correction, able to respond to temporal variation (primarily seasonal)
- incorporates an improved cloud mask for MERIS
- benefits from a more automated quality assurance process
- extends the time series to the end of 2013
- refreshes the input datasets to the latest versions

Ocean Colour Component of ESA Climate Change Initiative

OC-CCI: Improved coverage in many under-sampled regions

SeaWiFS July Climatology from NASA

OC-CCI July 2003

OC-CCI: Improved uncertainty characterisation in V2 compared with V1

OC-CCI: Future Plans

- Incorporate VIIRS into the time series
- Extend time series to 2015
- Prepare for Sentinel-3
- Improve Case-2 products

Acknowledgements

ESA and OC-CCI thank the many members of the ocean-colour community who helped in many ways: validation data, participation in user consultation; feedback on products. A special thanks to NASA for their continued help and support.

European Space Agenev

SEOM → ESA Program for Scientific Exploitation of Operational Mission

→ Framework for R&D, Algorithm Development, User forum, Tools development

On Ocean Colour a number of activities started in the last months:

Extreme Case 2:

- Water Quality parameters (Chlorophyll concentration, suspended matter, turbidity, ...) fairly well addressed in open ocean ("Case 1") and moderate turbid coastal waters ("Case 2")
- Reliable consensus algorithms not available for extremely turbid and absorbing waters (e.g. river estuaries, Baltic Sea, Arctic Sea)
- Sentinel 3 offers new capabilities: new bands, including SLSTR SWIR bands, operational frequency

Pools Of Carbon in the Ocean:

• Explore the potential of remote sensing for detecting particulate carbon pools in the ocean, Compare with models, Focus on climate studies

Daily PAR:

 Develop an innovative daily PAR product from ENVISAT/MERIS & S3/OLCI and compare to existing in situ data and Level 3 daily, weekly and monthly equivalent products (from SeaWiFS, MODIS Aqua/Terra, VIIRS, and GOCI

Establish and maintain SI traceability of Fiducial Reference Measurements (FRM) for satellite ocean colour.

Implement some of the CEOS OC-VC INSITU-OCR White paper recommendations

- 1. Development and implement an instrument laboratory and field inter-comparison experiment for FRM radiometers (round robin) with mandatory participation of National Metrology Institution(s)
- 2. Foster and enhance international Ocean Colour validation activities.
- 3. Study What is required in terms of infrastructure for vicarious calibration and validation for Europe for the next 20 years? leading to firm recommendations on the way forward for the next generation of European Ocean Colour vicarious calibration/verification infrastructure.

The output of #3 will be written up in the form of an IOGGC Monograph and, subject to IOCCG agreement could form an Official monograph (TBC by IOCCG).

The activity will start early 2016

Please Contact Craig Donlon at the IOCS if you would like to be involved!!

Conclusion

- → Sentinel format alignment + improvement
- Copernicus: Continuity and Long term OC program (more than 20 years)
 - \rightarrow SentineI-3A (with OLCI) ready for launch end 2015.
 - → OLCI + SLSTR gives:
 - 1 virtual instrument
 - Spectral range upto 12um (incl. 1.3, 1.6 and 2.2um in IR)
 - "Absolute" dual-view atmospheric correction over 750 km central swath
 - \rightarrow SentineI-2 potentiality for OC in coastal and inland water
 - → Data Policy Free for all users
 - **ESA shall continue to deliver R&D** that pioneers new satellite technologies, geophysical algorithms, products and applications of ocean colour working in partnership with the EC, EUMETSAT and the other international community
 - → CCI Program
 - \rightarrow SEOM
 - 21 → FRM4SOC

symposium 2016

Main Objective: Presentation of Exploitation Results based on ESA Earth Observation Measurements

Important Dates:

Deadline for abstract submission16Notification of AcceptancesEndIssue of Preliminary ProgrammeFeOpening of Registration to the SymposiumRelease of the Final ProgrammeRelease of the Final ProgrammeatSubmission of Full Papersat

16 October 2015 End January 2016 February 2016 m February at the symposium <u>at the symposium</u>

Themes:

015Atmosphere, Oceanography, Cryosphere, Land,2016Hazards, Climate and Meteorology, Solid6Earth/Geodesy, Near-Earth Environment,February 2016/Methodologies and Products, Open Science 2.0

http://lps16.esa.int

Thank you for your attention

For more information http://www.esa.int http://sentinel.esa.int

Contact:

Philippe.Goryl@esa.int

