

International Ocean Colour Science Meeting 2015

CNES OCEAN PROGRAMS

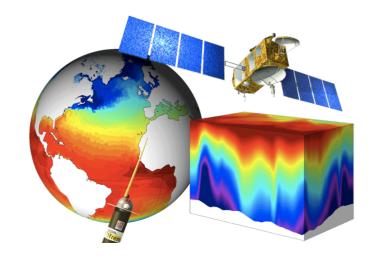
Marina Levy, CNRS, Ocean Program Scientific Advisory Committee President Philippe Escudier, CNES, Ocean Program Manager

Wednesday, June 17th, 2015

San Francisco,

BUILING

2


- CNES OCEAN PROGRAMS OUTLOOK
- OCEAN COLOR: GEO-OCAPI MISSION

CNES INVOLVEMENT IN OCEAN OBSERVATION

Ocean sciences are one of the major interests of CNES Earth observation programs

- Supporting a strong scientific community through dedicated research funding
- Supporting large scope (spatial + in situ + models) projects and initiatives (e.g. Copernicus Marine Service, Mercator-Ocean, CORIOLIS and bioArgo, Boussole, GIS COOC...
- Supporting R&D (Instrument, mission concepts, data processing...)

CNES SATELLITE MISSIONS

Developed and operated through different frameworks

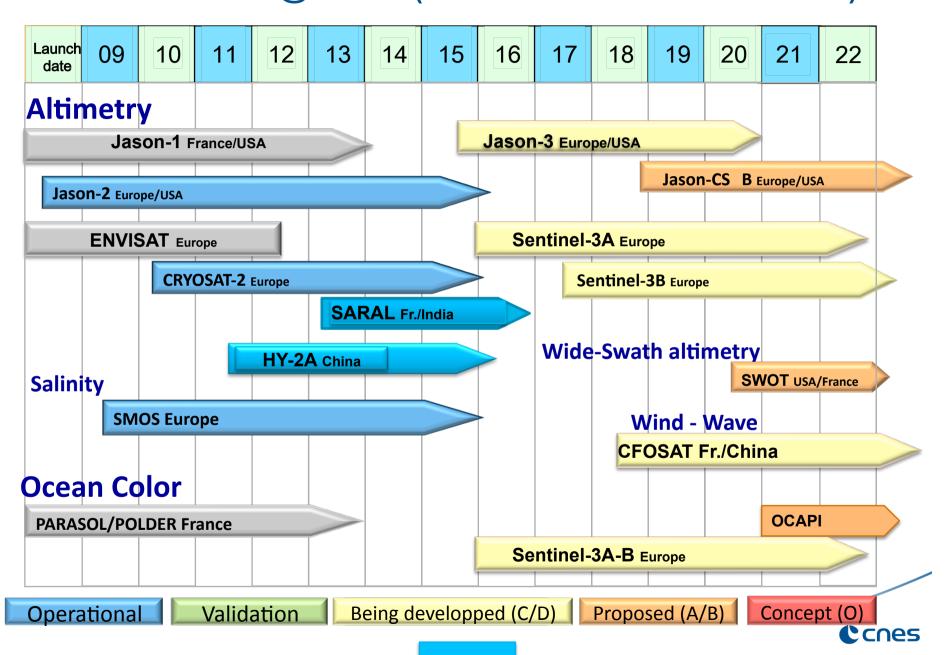
- European cooperation : ESA/EUMETSAT/UE
- Multilateral cooperation : US, China, India, ...

Strong involvement in altimetry, significant involvement in other ocean variable measurement

Altimetry: Jason-1/2/3/CS, SARAL/AltiKa, SWOT, Sentinel-3, Hy-2A

Salinity: SMOS

Sea State, wind/waves : CFOSAT,


ocean color: PARASOL, Sentinel-3, GEOCAPI

Interest in development of synergies between missions

→ Mutual benefits between Altimetry, Ocean Color, Sea State

Ocean missions @ CNES (various levels of contributions)

CNES ACTIVITIES IN THE FRAME OF COPERNICUS PROGRAM SENTINEL-3

Involvement at all levels:

Space component

CNES contributions to development of Sentinel-3:

- → System support for the altimetry payload and ground system
- → DORIS, orbitography processing
- Ground segment prototyping
- → Calval and value added products

Core Services

- Partner with Marine Service team leaded by Mercator-Ocean
- R&D support (future mission assimilation preparation)

Science support

- In situ validation campaign + BOUSSOLE, BIOARGO for bio-optics
- GISS COOC: group around Ocean Color
- Algorithms, Data analysis
 - → Ocean Color, altimetry, SST + Sentinel 1 (Ice, Sea state)

STATUS ON GEO-OCAPI MISSION

Phase 0 successfully conducted

⇒ GEO OCAPI « Ocean Color Advanced Permanent Imager » from geostationary orbit Inherits from GOCI and OLCI (Sentinel 3) instruments

Decision to conduct a Phase A following science prospective seminar recommendation (La Rochelle 2014)

- Conclusion of phase 0: accommodation as "hosted payload" on telecommunication satellites
- Target of Phase A: support a proposal to ESA Earth Explorer 9 Announcement of opportunity
- First meeting on June 10: Tuning of science mission requirements to fit EE9 and hosted payload constraints
- International cooperation needed:
 - At European level to support the proposal, develop and conduct the mission
 - At international level for coordination and synergies with similar initiatives
 - → "Virtual constellation" approach for global coverage

GEO-OCAPI: PHASE 0 MISSION REQUIREMENTS (1/3)

						L _{max} ,	SNR at	
Band	λ	Δλ	L_{min}	L_{ref}	Lmax		250 m ¹	Use
Dana	(nm)	(nm)			$\mathbf{r}^{-1} \mu \mathbf{m}$	ocean	& L _{ref}	USC
	()	()						#11 mm #14
1	395	10	12	65	580	180	400	Chl-CDOM separation
2	412	20	12	70	550	190	400	CDOM, possibly atmo- spheric correction above "black waters"
3	442	20	12	65	650	185	400	Chlorophyll, TSM, CDOM
4	470	20	11	60	650	175	400	Specific anomalies of the re- flectance spectrum
5	490	20	10	50	665	165	400	Chlorophyll, TSM, CDOM, diffuse attenuation coeffi- cient, Secchi transparency
6	510	20	8	45	620	155	400	Chlorophyll, TSM, CDOM, detection of blue-absorbing dust-like aerosols
7	560	20	6	30	580	132	300	Chlorophyll, TSM, turbidity index, Secchi transparency
8	590	20	5	25	550	120	300	Spectral slope b_{bp} , maximum R in Case-2 waters
9	620	20	4	20	550	95	300	Chlorophyll, TSM
10	660	20	3	15	500	86	300	Chlorophyll, TSM, Chl fluo- rescence (baseline)
11	681	7.5	3	15	500	82	200	Chl fluorescence (peak)
12	709	10	3	13	450	75	200	Chlorophyll, TSM, Secchi transparency, Chl fluores- cence (baseline)
13	750	15	3	11	450	65	150	Atmospheric corrections
14	754	7.5	2	10	400	65	150	Reference for O ₂ A-band
15	761	2.5	2	6	400	63	30	O ₂ A-Band (aerosol scale height, clouds)
16	779	15	2	9	380	60	150	Atmospheric corrections
17	865	35	1	6	300	45	150	Atmospheric corrections
18	1020	40	1	4	220	45	150	Atmospheric corrections (turbid waters), cirrus clouds

- ⇒Between12 and 18 spectral bands.
- ⇒Signal-to-Noise Ratio < 400
- ⇒ Spectral resolution from 10 to 40 nm (depending of the spectral domain and uses)

GEO-OCAPI: PHASE 0 MISSION REQUIREMENTS (2/3)

Ground Spatial Resolution

- 500 meters and larger for Open Ocean (Case-1 waters)
- 100-250m meters for Coastal Ocean (Case-2 waters)

Coverage

- Global on the visibility disk
- Swath of 100 km x 100 km

Revisit frequency: the main design driver

- from ½ to 1 hour (diurnal)
- Daily composite (mosaïc) after clouds/glitter correction

Challenges

- Image quality
- Radiometry and geometry quality

CONCLUSIONS

GeoOCAPI shall provide next Ocean Color generation complementing low orbit observation with :

- Very high temporal resolution :
 - thanks to his GEO position, the disk is revisited every hour and Near Real Time observation is possible
- High spatial resolution of 100/500 m, 12-18 spectral channel, a swath of 100 km compatible with LEO data (MODIS, SENTINEL 3/OLCI, ...);
- Technological miniaturization which allows easy accommodation as hosted payload (or mini-satellite)
- Lifetime anticipated : 10 years

GeoOCAPI phase A agenda: from May 2015 to mid-2016.

Phases B/C/D/E1 should be decided for a launch in 2020/2021.

This program strongly depends on the development of critical technologies (like specific detectors) and international cooperation.

