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Issues related to ocean colour in coastal zones and inland waters

Quick summary of some example coastal and inland systems with regard to temporal
scales of variability and range of optical complexity

Harmful algal blooms and some conceptual thinking
Signal characterisation for Case 2 and eutrophic water types

Coupled radiative transfer models: better understanding constituent contributions to the
ocean colour signal for eutrophic and optically complex waters

Validation in eutrophic and optically complex waters: challenges and needs
The atmospheric correction: algorithms to circumvent the pain

Consideration of algorithm types and structures: regional examples and scaleable
algorithm structures

A few thoughts on the way forward...




Characterising ecological and bio-optical variability for example coastal and inland systems

Lake Erie Several example ecosystems are briefly examined — systems North Sea

that encompass much of the ecological and optical complexity
from global coastal and inland water bodies.

* What are the main temporal scales of variability from an _
ecological perspective? .

* What range in optical complexity in time and space can be '
expected?

* How does this translate into ocean colour user requirements

needed to resolve ecological variability of the systems from

the event to longer time scales?




The southern Benguela: a dynamic, productive, phytoplankton dominated upwelling system
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The southern Benguela: a dynamic, productive, phytoplankton dominated upwelling system
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Mooring time series data and MERIS chlorophyll a data
showing the detection and wide spatial extent of a bloom
of the small dinoflagellate Prorocentrum triestinum from
2nd to 5th April 2004, in the Namaqua shelf region. The
bloom appears at the mooring ~ 4 hours after the
satellite overpass, as a thin lens of warmer high biomass
bloom waters are advected shorewards in the easterly
surface flow. Satellite chlorophyll a data, derived through
an experimental red band algorithm designed for high
biomass application, show the widespread and complex
distribution pattern of the bloom. Bernard et al, 2006
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The Baltic Sea: from gelbstoff to cyanobacteria in a semi-enclosed brackish system
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Fig. 2. Scheme of vertical mising and Tansport profesess in the Balri Sea.
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The Baltic Sea: from gelbstoff to cyanobacteria in a semi-enclosed brackish system
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Fig. 4. Sample cases identified in Fig. 2 through letters a-d for different areas of the feature map obtained from the first two PCA components. The first column displays non-
normalized Lyy spectra, the second column displays the former spectra normalized with respect to Lyx(555), the third column illustrates the related absorption (ays, ay, and ag,) and
backscattering (by,) components with the error bar indicating + 1 standard deviation.
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Two contrasting phytoplankton populations shape the
reflectance spectrum in the Baltic. Eukaryotic chl-a and

Chloropyll a concentration pg/l
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Bio-optical gradients in the Gulf of Bothnia and
Central Baltic. Harvey et al 2012, Coastcolour UCM.

sun-induced fluorescence dominate in spring, whilst
prokaryotic phycobilipigments and chl-a dominate in
summer. Simis et al.,in prep




The North Sea: a tidally-dominated system with dynamically variable Case 2 influence
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Figure 4.2: Time series of MODIS satellite derived SPM measurements for six SmartBuoy locations, with
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The North Sea: a tidally-dominated system with dynamically variable Case 2 influence
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Fig. 6. Annual membership frequency (in %) associated with the 4 reference optical classes (a, b, ¢, d) and optically mixed (d) spatial distribution obtained from SeaWiFS daily data
in 2001 in the eastern English Channel and Southern North Sea.

0 W English Ch.
* East Anglia

+ Belgian Coast
| o © Dutch Coast
00 01 02 03 04 05 06 07 08 09 1.0 + SE North Sea

anap (442) (m') x German Bight

C 0.0, 1.0 D

acpoy (442) (m)
0.5 Hpy (442) (m™")

Ternary plots showing regional
variability of Case 2 influences across
the North Sea and English Channel.
Tilstone et al 2012

1.0
().
00 01 02 03 04 05 06 07 08 09 10

. 0.
00 01 02 03 04 05 06 07 08 09 1.0
ayap (442) (m')

ayap (442) (m)




Lake Erie: a shallow eutrophic dominated by wind and riverine variability
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Hartbeespoort Dam: a small hypertrophic water body with a significant Microcystis problem...

Sample above-water R spectra from Zeekovlei, Loskop
and Hartbeespoort Dams. Matthews, unpublished

1870

Pseudo true-colour image Hartbeespoort Dam + 4 x 10
km, SumbandilaSat, May 2010. Meyer, unpublished
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Preliminary summary: ocean colour requirements for diverse coastal and inland waters

: 3

*  “Operational” has some diversity of meaning, but coastal and inland waters
users require rapid, routine access to operational high quality application-
focused products

*  What are the user needs? A wide range, but include water quality &
eutrophication indices; phytoplankton, sediment and biogeochemical dynamics;
harmful algal bloom/PFT indicators for both real-time operational and long term
ecosystem characterisation.....

*  Whatis the primary event scale and how important is it to resolve? Dynamic
wind driven systems, such as the Benguela and Baltic, need a resolved
observation frequency of < 3 days for phytoplankton ecology applications. Tidally
and eutrophic inland systems need a < weekly resolved observation frequency,
although this does not address the highest frequency events....

*  What range of optical complexity must be addressed? All systems need the
ability to resolve large intra-image variability e.g. oligotrophic to hypertrophic,
mesotrophic to Case-2 sediment or gelbstoff dominated waters.....




Challenges of using Ocean Colour Radiometry for HAB detection

Coastal and inland waters
optically complex & dynamic
Need to account for algal
properties, sediments dissolved
| organics, atmosphere, land
adjacency, etc...

Challenges of functional type detection
What information can realistically be
provided on assemblage structure in
coastal/inland waters?

Stratification of blooms & motility
Example: migrating high biomass (>500 mg
m-3) dinoflagellate blooms in Monterey bay

chla (mg m3)

220 221 222 223 224 225 226

Many HABs harmful at low biomass
A. tamarense toxic at only 103 cells I

IOCCG/GEOHAB WG HABs & Ocean Colour, in prep




Nutrients

Nutrients

Red Tide [ Pseudo-Nitzschja

Dinoflagellatgs

Microcystis /
Cyanobacteria

Aureococcus &

Synecochoccus
[Karenia  [Cochlodiniu

Alexandrium

The Margalef Mandala &
common HAB types

Turbulence

bloom types that can potentially be
detected directly with ocean colour

bloom types
that can
potentially be
detected only
with ocean
colour &
additional
ecosystem
classification

The Margalef Mandala &
ocean colour potential

Turbulence

The Ecosystem Perspective

The Margalef mandala is a common way of
examining algal succession by characterising the
ecological niche in which different species or
groups are most likely to proliferate.

Many harmful algal species can have impact at
very low cell concentrations, as a minor
component of the algal assemblage, or as
subsurface blooms with no bio-optical surface
expression.

Viewing the mandala from an ocean colour
perspective, it is clear that only high nutrient-
demand/biomass blooms are likely to be directly
detectable using ocean colour - regardless of
the algorithm type or technique used.

Using ocean colour as one component of a
multi-parameter ecosystem classification -
effectively using the mandala to create an earth
observation based metric - will potentially allow
the detection of some other bloom types.

I0OCCG/GEOHAB WG HABs & Ocean Colour, in prep




Spectral characterisation and causality analyses for Case 2 waters
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Parameters Mean Standard  Coefficient Minimum  Maximum (.0
| deviation  variation (%) |
0.0 SST 11.7 29 24 7.3 16.7
* - N 33.9 15 4 23.1 354
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Gedom (443) 0.15 0.12 80 0.01 064 [=1.0 T
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First EOF mode (74%): strong
correlation with
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Spectral characterisation of reflectance data with increasing phytoplankton biomass

1150 remotely sensed reflectance spectra from TSRB & ASD with corresponding fluorometric/photometric Chl a
data, from the southern Benguela, Zeekoevlei (hypertrophic), Hartbeespoort (hypertrophic), Loskop (oligo-

hypertrophic)
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Characterisation of marine eukaryote associated reflectance data at high biomass

Majority diatom
dominated

Dinoflagellate/coc
colithophore
dominated

M. rubrum
dominated with
phycoerythrin
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Signal in red primarily
fluorescence with
quantum yields of < 0.5%

Some shift towards 709
nm as
absorption/backscattering
processes seen in
combination with
flug

Inflection point appears

related to secondary chl
a/c absorption peaks +
620nm in both a & bb

Signal in red primarily at
709 nm peak as
absorption/backscattering
dominates




Characterisation of inland prokaryote/eukaryote reflectance data at high biomass

(hypertrophic), Loskop (oligo-hypertrophic)

Prokaryote assemblages (-) dominated by Microcystis species

Typical TSS values of 0.1 to 300 mg |1, of which phytoplankton contribute 20% to 100%
Eukaryote assemblages (®) dominated by mixed or Ceratium species

Sample remotely sensed reflectance spectra acquired with above-water ASD from Zeekoevlei (hypertrophic), Hartbeespoort
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Coupled radiative transfer models: better understanding constituent contributions
to the ocean colour signal

g
&

Ra theo

Ra theo

5 8cgom
18 +
16{ W4 e Understanding systematic variations in ocean colour radiance needs a
14+ . B combination of modelling & empiricism. This combined approach is the
12 : g | only way to fully understand causality with regard to resolving first order
104 3 : = 4 effects of biomass and constituent change in complex waters and second
08 - - o ——1| order phytoplankton functional type variability & effect.
081 §—2 |
aad 2 - (2)
380 400 420 440 460 480 500 520 540 560
A
. & a [
a - ohar . any P
PO _ [ 31 ‘e 5 _ 1.1 11 — -
- s "::' 12 1.2 4 -
124 >4 T
. - i 1.1 1.°
11- mns , " - .
o s N Bl 1z - . 141
. i ————— i i - i
104 x e s ———= | o 0y T o £ va e ————
09 - : = e aE 8 ta |
9V g - -~ 2 e “ -
il e - ary - g . T L7 _
> . 0B o * 0 — 'Y} E— : Ll
07 ®) Hjﬁlﬂlid:ltﬂlﬂlbﬂlttﬂ -Jn!#.'l-dl.lél:ll.lﬁﬂl.lﬂ.l.lb\"_"l.lbﬂ.lbtl ’ A!n!.lﬂl.lﬁﬂ.lﬁb!.lt'.d.ltilbd:t!-:
330 400 420 440 450 480 500 520 540 560 . : i
b’- Fig. & Thioeelicsl méan radiance snocmalses a3 & Tunction of wavelength, v sesponss
P VANFNON 1 A [E] 2% o8] dmd B{e) Tor a chlosgphyll & consgnlrahon of 1mg ! Resarhs
18« ) e are obtained Tof cealwlic pommeicn vamaloas e e Bllowang phvioplaakion groups
84 _ g Z nanoeucaryotes (blue), picoplankton cyanobacteria {green) and dextoms (red).
CE T . e o . .
144 : : — - Preliminary signal analysis of
124 s S— - PHYSAT based on bio-optical
1.0 s - 3 » 3 environment. Alvain et al., 2012
08 - . — —t !
06 ®S - = |
04 w

350 400 420 440 450 480 S00 520 S40 S80

2




Modelling systematic variability in phytoplankton I0Ps and effects on the light field:
Equivalent algal population coupled IOP/radiative transfer model

Eukaryote:
core = cytoplasm
shell - chloroplast

Prokaryote:
core = gas vacuole
shell - chromatoplasm

Two layered sphere model allows
IOP modelling of various
eukaryotic (Bernard et al 2009)
and vacuole containing prokaryotic
(Matthews et al submitted)
functional types. Allows for
variations in size, ultrastructure,
pigment complement & density,....

Phytoplankton functional
type distributions

0 % 50 100 300 500

Equivalent algal population models allows
creation of admixtures of functional types
based on effective diameter & diversity
manipulated particle size distributions. Bernard
et al 2007, 2009, Robertson et al in prep

Equivalent algal population IOPS, including
phase functions, coupled to Hydrolight,
Ecolight and Ecolight-S radiative transfer
models for forward and inverse
applications. Robinson et al in prep




Modelling systematic variability in phytoplankton I0Ps and effects on the aquatic light field

» All phytoplankton IOPs from 16 um effective diameter two-layered “dino/diatom” population model

* Non-linear scaling with Chl a of gelbstoff/detrital absorption and non-algal backscattering using simple
spectral slope models

+ Spectrally variant Fournier-Forand phase functions based on total backscattering probability

* Fluorescence quantum yield varying from 0.8% to 0.2% with Chl a concentration
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Coupled radiative transfer models: effects of phytoplankton size at changing biomass
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Example demonstrating the potential effects
on ocean colour of varying assemblage size, as
given by the effective diameter of the
population, with different parameterisations
of ci (the chlorophyll a density per cell)as one
of the key phytoplankton IOP variables

Static ci = 2.5 kg m-3 (lines)
Variable ci as below (dots)
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radiative transfer models: effects of phytoplankton size at changing biomass
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Coupled radiative transfer models:
effects of phytoplankton pigment variability at changing biomass
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Coupled radiative transfer models: better understanding constituent contributions
to the ocean colour signal

Fropartion of phyto to total absorption, when Chl a =2 ,at size 16 um
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Coupled radiative transfer models: effects of gas vacuoles on IOPs

Increasing gas vacuole volume
causes increased backscatter &
decreased forward scattering

Model reproduces to first order
observed features for gas
vacuolate cells in the
attenuation and Volume
Scattering Function

Matthews et al in prep
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Coupled radiative transfer models: effects of gas vacuoles on reflectance
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HAB/Phytoplankton Functional Type Applications:
need for better characterisation of diversity and abundance at the appropriate scales

4 M. Huete-Ortega et al. Metabolic scaling and abundance 10 —BOD
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regression line, and ¢ and a the corresponding intercept values.
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In the coastal & inland environment, PFT approaches based on global
trophic structures are unlikely to function optimally. Abundance based
empirical approaches must be regionally derived. Bio-physical
approaches offer much better potential scaleability across ecosystems
but systematic gathering of community structure data at the event scale
are needed e.g. imaging flow cytometers, genetic probes etc....




Need for better characterisation of diversity and abundance at the appropriate scales:
an example of the type of data we aspire to.....
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larmful phytoplankton ecology studies using an autonomous molecular analytical and
ocean observing network

I. Ryan,2" . Greenfield,® . Marin, IIL.* C. Preston,* B. Roman,? 8. Jensen,® D. Pargett,* J. Birch»
C. Mikulski, G. Doucette,” and C. Scholin®

aponiensy Bay Aguarium Ressanch Institute, Moss Landing, California
"L'l:i\trr.i[:f of South Caralina, Charleston, South Carolina
© Wational Ceeanic and Ammospherse Adminisration, Natonal Ocean Service, Charleston, South Carolina

Abstract

Using automomous molecular analytical devices embedded within an ocean observatory, we stedied harmiul
algal bloom (HAB) ccolopy in the dynamic coastal waters of Monterey Bay, California. During studies in 2007
and 2008, HAB species abundance and toxin concentrations were quantified periodically a1 two locations by
Enwvironmental Sample Proosssor (ESP) robote blochemdstry systems. Concusrently, environmental variability
amd processcs wene characterized by sensors co-located with ESP network nodes, reglonal oosan moorings,
autonomous wnderwater vebicle surveys, and satellite femote sersing. The two locations differed o their long-




Ocean colour applications in coastal and inland waters:
Need for optimised in-situ measurements & protocols

Algorithm development and testing is dependent upon the availability of
high quality in situ data, as is radiometric and further geophysical validation.

Standardisation of protocols necessary for the development of globally-
representative data sets, with (ideally) known error products for the
geophysical, inherent optical properties, apparent optical properties, and
atmospheric properties required.

While coastal seas are well represented in current data sets e.g. NOMAD,
cohesive data from more bio-optically challenging coastal and (particularly)
inland waters are scarce.

With increasing interest in coastal and inland applications, there is a need
to establish protocols that enable standardised development of the
necessary algorithm parameterisation and validation data sets....




Building on available protocols — what spatial differences must we account for?
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Building on available protocols — new methods needed for high biomass spatial variability?

Impact of sub-pixel variations on ocean color
remote sensing products

Zhongping Lee,"" Chuanmin Hu,” Robert Arnone,’ and Zhen Liu'

! Department of Environmental, Earth and Ocean Sciences, University of Massachusetts, Boston, Massachusetts
02125, USA
? College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA
* Naval Research Laboratory, Stennis Space Center, Mississippi 39529, USA
*Zhongping.lee@umb.edu

~

Fig_ 1. (left) A pixel observed by a low-resolution sensor; (right) Pixels observed by a high-
resolution sensor, coresponding to the low-resolution pixel.
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Fig. 2. (a) Rrs of 4 high-resolution pixels and their average. First value and second value in the
parenthesis are the absorption coefficient of phytoplankton and CDOM at 440 nm,
respectively. (b) Absorption spectrum derived from the average Rrs (blue line), as compared
with the average absorption spectra using various schemes, including arithmetic mean,
geometric mean, and backscattering-weighted mean (Eq. (8)).




Building on available protocols — what depth differences must we account for?

...stratification, thin layers and motility, challenging to resolve both from a sampling perspective and with
regard to their effects on the water leaving radiance....
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Building on available protocols — what depth differences must we account for?

Baltic sea optical depth (extremely shallow in blue) poses challenges

for coupling remote and in situ observation networks....

Depth (m)
~ no
o o o

—_
&)
T

125+

15

April

o

15

30

. W Y

ll\n“‘pm‘ I : :

Pl BT
a

I .z! it
il h
\.\"‘4" |

b
i
iy J

:|> Ferryboxes

| ‘ ““‘ i

i Al A

’/ ‘. i

‘I ,’I!. !P‘

iy

; | ) —— Chl-a 1
1%! optical depth:

' ® 412nm
® 560 nm
® 665nm

] B c

0 5 10 15 10 15
Chlorophyll-a (mg m )
Simis et al. in prep



Coupled radiative transfer models: improving understanding of measurement
constraints for highly turbid waters

Ecolight-S Klu at high Chl a optical depth
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Building on available protocols — what IOP differences must we account for?...or trying to force
green slime through optical flow tubes at the wrong depth scales
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The elephant in the room? Atmospheric correction and adjacency effects
for turbid waters inconveniently close to land....

* The atmospheric correction issues facing ocean colour use in coastal and inland waters are considerable: highly
turbid waters, the problems of adjacency, complex aerosol contributions, etc.

* See splinter session summary on advances in atmospheric correction (including turbid waters) for the well-
informed consensus.....

* Consideration of alternative atmospheric corrections algorithms necessary, particularly for small water bodies.

Contents lists available at ScienceDirect
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Fig. 5. Comparison between reflectance spectra calculated by SCAPE-M and the BEAM lake processors. All the data were processed by ICOL and C2R processors in BEAM, except for
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Algorithm examples: top-of-atmosphere eutrophication/cyanobacterial algorithms

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

A novel ocean color index to detect floating algae in the global oceans

Chuanmin Hu *

College of Marine Science, University of South Florida, 140 Seventh Avenue, South, St. Petersburg, FL 33701, United States

floating algae. Therefore, the Floating Algae Index is defined as:

FAI = Rienig — Rienir:
Rienik = Recrep + (Recswir = Rreren) % (i — Awen) / Aswir — Axe).

(4)
where R/ nir is the baseline reflectance in the NIR band derived from a
linear interpolation between the red and SWIR bands. Note that the
definition of FAI is similar to that for MODIS FLH (Fluorescence Line

Height, Letelier & Abott, 1996) and MERIS MCI (Gower et al., 2005),
but uses different band combination. In the above equations for

E g B

Initial blooming date (Julian date)
2

=]

Figure 1 Duration of cyanobacteria blooms, defined as the period between the first and last day with FAl >-0.004 in

the MODIS imagery. White areas showed no bloom during the entire year.
Hu et al 2012,

IOCCG/GEOHAB in




Algorithm examples: top-of-atmosphere eutrophication/cyanobacterial algorithms
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An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance,
surface scums and floating vegetation in inland and coastal waters

Mark William Matthews *¥, Stewart Bernard *, Lis| Robertson ?

o Marine Remote Sensing Unit, Department of Oceanography, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
® Earth Systems Earth Observation, Council for Scientific and Industrial Research, 15 Lower Hope Street, Rosebank, 7700, Cape Town, South Africa
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Maximum Peak Height Algorithm

Chlorophyll-a empirically based algorithm designed for
trophic state / cyanobacteria detection in inland and
near-coastal phytoplankton-dominant waters

Based on the Maximum Peak Height (MPH) in the MERIS
red bands at 681, 709 and 753 nm

Utilizes MERIS BRR (not Rrs) to normalize for atmospheric
Rayleigh effects because of problems with atmospheric
corrections

Simultaneously handles 3 primary cases:
Mixed oligotrophic/mesotrophic low to medium biomass
conditions with Chl-a less than 30 mg.m-3 @ 681
fluorescence
1.a eukaryote species SICF signal
1.b special case: low biomass cyanobacterial
blooms (no SICF)
High biomass or eutrophic/hypertrophic water with Chl-a
concentrations greater than 30 mg.m-3 & 709 backscatter
2.a eukaryote species (Diatoms/Dinoflagellates)
2.b vacuolate cyanobacterial species
Extremely high biomass conditions associated with
surface scums, or hyperscums, and ‘dry’ floating algae or
vegetation (Chl-a > 500 mg.m-3)
Cyanobacterial scums (chl-a > 500 mg.m”(-3))




Algorithm options: top-of-atmosphere eutrophication/cyanobacterial algorithm
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Phenological applications of the MPH algorithm: ten years of cyanobacteria

‘L -

Pseudo true-colour image Hartbeespoort Dam + 4 x 10

km, SumbandilaSat, May 2010. Meyer, unpublished
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Hartbeespoort Dam: time sedies of remotedy derived estimates.
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10 year time series of phytoplankton biomass (top), percentage cyanobacteria
(middle), and percentage surface scums (bottom) for Hartbeespoort Dam, using
the MPH algorithm applied to MERIS FR data. Matthews IOCCG/GEOHAB in prep
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X-wavelet analysis of phytoplankton biomass vs precipitation
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Algorithm examples: simple empirical algorithms for biomass estimates in eutrophic waters
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The same model (equation (2)) was used to assess
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the potential of MODIS and MERIS to retrieve the chl-a 0.00
concentration in turbid productive waters.
We tested the model in the form
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Figure 2. Remote-sensing reflectance, Ry, spectra and spectrum of
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Figure 5. Two-band model values with simulated MODIS bands (A), and three-band model values with simulated MERIS bands (B), versus
chl-a concentrations.




Algorithm examples: IOP range based detection of Karenia brevis

A novel technique for detection of the toxic dinoflagellate, A T mg]- e a0
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Algorithm examples: semi-analytical phytoplankton functional type for effective diameter

x 10~ 30th March 2005 - Prorocentrum triestinum x10~ 5th April 2005 - Ceratium furca
7 7 7
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MERIS Reduced Resolution radiometric match-ups (A and
B); and algorithm outputs from the Equivalent Algal
Population semi-analytical algorithm, demonstrating the
effectiveness of this approach for detecting high biomass
(C and D) and distinguishing dominance by small
(Prorocentrum triestinum) and large (Ceratium furca)
dinoflagellates (E and F respectively) using the effective
diameter product. Bernard et al in press, IOCCG/GEOHAB
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Spectral classification techniques: system-transferable, scaleable algorithm structures

There is necessity to describe a considerable amount of variability in Inherent Optical
Property (IOP) subcomponent models.

This is particularly true, if inversion algorithms are to be applicable at global scale yet
remain quantitatively accurate in coastal & shelf seas.

This is unlikely to be achieved in the foreseeable future, with a single representation of
|OP subcomponents.

The proposed approach is an algorithm framework more than a specific algorithm.

Advantages of fuzzy logic defined provinces

They allow for dynamics both seasonal and inter-annual in the optical properties of a
given region.

They address the issue of transitions at the boundaries of provinces (through the fuzzy
membership function of each class) thus resulting finally in the seamless reconstruction
of a single geophysical product.

The framework structure allows for further class based selection of empirical or semi-
analytical algorithms, selected bandsets, inversion type.....




Error Specification according to Optical Water Type

Spectral Radiance Values Per Pixel

/\

Fuzzy Logic Biogeochemical and Bio-
optical Products

Membership in

Optical Water Type

v .| Uncertainties per pixel
' and per product

Advantages:

types are classified

Type and by Product

intervals

Uncertainties, by Optical

waters

No sharp boundaries across types

* Not limited by geographic region, provided all possible optical water

Error assignment on basis of overall optical signal, and not on a single
variable, e.g. chlorophyll, and hence consistent across products

« Total number of water types is small, so number of observations per
class would be greater than if we were to use a large number of class

« Optical classification provides a way to distinguish case-1 and case-2

Courtesy Shubha Sathyendranath,
OC-CCl work, preliminary outputs




Error Specification Refinement: Fuzzy Logic
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Spectral classification for Case 2 waters: application at a variety of scales
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Fig. 3. Average reflectance spectra derived for the Ward's hierarchical classification ap-
plied on (a) normalized (Classes 1, 2, 3, 4) and (b) non-normalized (Classes 17, 2/, 3/,
4') hyperspectral in situ measurements. Reference spectra obtained from the cluster
analysis performed on spectrally normalized reflectance data degraded to the SeaWiFS
bands (c) and used to perform the SeaWiFS pixels labeling procedure with selected
wavelengths indicated by filled circles. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Spectral classification for extreme Case 2 and eutrophic waters

OWT | Chl Chl Chl Chl | Std. N
min Median Mean Max | Dev

0.06 1 0.53 1.17 1.9 1075 | 2. 50
2 0.40 3.15 7.75 79.4 24 | 114
0.04 3 0.63 471 13.1 1719 | 22. 133
4 1.42 26,7 311 [ 2000 | 310 | 70

0.02
5 587 | 3150 | 2950 | 705.0 | 1672 | 32
6 0.45 5.10 15.2 96.6 | 21.1 38
400 600 800 400 600 800 7 o84 200 205 %7 | 223 3
All 488

400 600 800 400 600 800

R Class Means
0.06 I8
0.06 .
—OWT1
0.04 —OowT2
0.05F OWT 3
0.02 7 ——OWT 4
——OWT5
" 0.04F ——OWT 6 T
400 600 800 — oW

n
M" 0.03

0.02

0.01 \L_,'

Moore et al, in prep e

400 450 500 550 600 650 700 750 800

Wavelength (nm)




Summary: Suggested Ways Forward for Coastal and Inland Ocean Colour Applications

Measurements

* New instruments, sampling and processing protocols are needed to reduce and quantify errors in
validation/algorithm development data and subsequent algorithm products

* Need for autonomous systems, preferably of a low-cost distributed nature, to achieve observations at high enough
frequency

* Need for better & more widespread phytoplankton community structure observations to allow better
characterisation of diversity, succession etc.....

Bio-Optical Models

* Improvement in bio-optical modelling capabilities to offer effective signal analysis over wide range of optical
complexity and phytoplankton communities; and more effective algorithm development and validation.

* Additional benefits would include improved traceability matrices and recommendations for optimal sensor
characteristics for eutrophic waters e.g. clusters of narrow bands from green —red — red edge — NIR....

Algorithm Frameworks & Products

* Approaches that offer dynamic and scaleable means of characterisation, algorithm optimisation and error
quantification for both synoptic (image-based), and temporal (event- and multi-seasonal scale time series) are
needed.

* Spectral classification algorithm structures offer such possibilities in space and time (persistence), with possibilities
for regional and application nests, and such approaches should be adopted at least for pilot dissemination.

Networks & Communities

* Global networks of regional ocean colour/observation sites — interact with other communities such as GEO and
GEOHAB (GlobalHAB), who have proposed network of global sites acquiring routine, detailed community
structure & other data

* Similarly for GEO Blue Planet — integrates OC community into global water quality, ocean information systems,
coastal observation, operational ecosystem monitoring, global operational ocean forecasting network,
fisheries/aquaculture management systems...




Summary: Suggested Ways Forward for Coastal and Inland Ocean Colour Applications

Bring on the global constellation of
geostationary ocean colour sensors.....




Assessing the ocean colour signal: sun-induced fluorescence

....a short and uninformed commentary...

Fluorescence highly variable with dependencies on light history (mixing),
physiology, taxonomy.....

Common qualitative use of MODIS nFLH and MERIS FLH products to
reduce ambiguity i.e. to ascertain whether synoptic features are
associated with phytoplankton as the sole source of fluorescence at
+683nm

Quantification of the FLH-type signal using the baseline method becomes
difficult in eutrophic waters as backscattering in the red increases

The presence of sediment/NAP and gelbstoff has considerable effect
upon the FLH-type signal, increasing complexity of quantitative use of this
signal in coastal waters although some regional algorithms have been
developed

The fluorescence quantum yield is obtainable from semi-analytical type
algorithms, and together with phycocyanin fluorescence offers some
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Fig. 1. Relationship between the nFLH data product measuring chlorophyll fluorescence at the sea surface and the chlorophyll concentration obtained from the OC2M ocean color '
algorithm. Black filled circles represent the median of the data falling within equally spaced bins of chlorophyll values extending from half the distance to and from the two adjoin-
ing points. The black X's represent the mean of the data for the same interval. The dashed lines represent the median + the interquartile range. The magenta line is the scaled the-
oretical model of Huot et al. (2005) for the relationship between nFLH and [chl] scaled such that it matches the median value of nFLH at 0.5 mg chl m~>, The gray points are from the
SeaBASS validation dataset for the MODIS AQUA sensor (http://seabass.gsfc.nasa.gov/, accessed 28/10/2010). Colors represent the logarithm in base 10 of the number of points (N)
within a bin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(a) Effect of increasing CDOM absorption is generally to
lower water-leaving radiances in the fluorescence emission wave-
band. (b) Increasing MSS to 10 g m* increases background water-
leaving radiances by an order of magnitude, and causes the Chl
fluorescence peak to become less prominent. Note the order of
magnitude difference in y axis scales in panels (a) and (b).

Mckee et al., 2007
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