Sean Bailey – NASA GSFC
Norman Fomferra – Brockmann Consult

SeaDAS and BEAM User Tools

Data Processing, Analysis and Exploitation Tools

International Ocean Colour Science
Meeting 2013
Darmstadt, 07.05.2013

The **BEAM** Project

- ESA project kicked off for exploitation of Envisat data
- Open source, agile software development
- Platform neutral, 100% Java

- BEAM today
 - 24 public releases, hundreds of module updates
 - Thousands of users worldwide
 - Dozens of projects use and support it (ESA, EU, EUMETSAT, NASA)
 - Dozens of supported sensors and data formats, data processors
 - Dozens of tools and data processors
 - Hundreds of universities, institutes, companies use it
- Active user forum (daily posts), frequently visited website, issue tracker, tutorials, manuals

- Which once was the "Basic Envisat (A)ATSR and MERIS Toolbox" became a general EO Toolbox and Development Platform
- Supported sensors: MERIS, (A)ATSR, ASAR, Chris, AVNIR-2, PRISM, MODIS, AVHRR/3, TM Thematic Mapper, SPOT-VGT, MODIS, SeaWiFS, VIIRS, OCM, ...
- Generic formats: NetCDF/CF, HDF-EOS, GeoTIFF, ENVI
- Derived Toolboxes based on the BEAM Platform
 - NASA SeaDAS 7 Ocean Colour Processing Toolbox
 - ESA NEST & InSAR Processing Toolbox
 - ESA LeoWorks Remote Sensing Training Software

The **BEAM** Project - Team

The Tools

Visualisation:

 Very fast image display and navigation, RGB, colour bars, lots of layer types (masks, GIS layers), fast band arithmetics ... >10 more

Processing

- Reprojections, GCP rectification, collocation, L3 binning, mosaicing, spectral unmixing, clustering, ...
- QAA IOP, NN-based AC, FLH-MCI, SST algorithms, and many 3rd party contributions, ... >20 more

Analysis:

- Flexible mask & ROI management, ROI-based statistics,
- Interactive scatter-, density-, profile-, histogram-plots,
- Interactive spectra-, pixel-, flag-, time-series-views,
- ... >30 more

BEAM User Interfaces

- VISAT: Graphical User Interface
- GPT: Command-line Interface
- API: Application Programming Interfaces
 - EO Data Model
 - EO Application Programming Interfaces
 - EO Rich Client Platform
 - EO Graph Processing Framework
 - Dynamic extensions via plug-in modules

Sentinel-3 Reader available

Command-Line Interface - GPT

BEAM 4.11

- Released in April 2013
- New Features
 - Interactive Time Series Tools
 - OPeNDAP Access
 - Temporal percentile and gap-filling operator
 - New, faster and more flexible Level-3 binning
 - NetCDF 4 output format
 - All SeaDAS / OBPG input formats (MODIS, SeaWiFS, VIIRS, OCS, etc.)
- Fixes and optimisations

Time Series Tools

OPeNDAP Access

BEAM 5 Plans

- Prototype reader modules for
 - Sentinel-3 OLCI and SLSTR
 - Sentinel-2 MSI, ATCOR Integration
 - (Sentinel-1 SAR through NEST)
- C and Python API
 - Embedding BEAM: Scripting, batch mode processing
 - Extending BEAM: Tools and processors
- "Backport" SeaDAS extensions into BEAM
- Release in Fall 2013

Sentinel-3 and -2 Support in BEAM

- Sentinel-3 Products
 - OLCIL1
 - OLCI Water L2
 - OLCI Land L2
 - SLSTR L1
 - SLSTR Water L2
 - SLSTR Land L2
 - SYN L2
 - VEG L2
- Sentinel-2 Products
 - MSI L1C
 - MSI L2A

- Applicable tools in BEAM
 - Image analysis
 - Layer management
 - Flag overlay
 - Mask management
 - Spectrum view
 - Spectral unmixing
 - Band arithmetic
 - Geo-corrections / -projections
 - Transect profiles
 - Region of interest statistics
 - Time series analysis
 - Mosaicking
 - Level-3 binning

SEADAS 7.0

Staff:
Aynur Abdurazik
Sean Bailey
Matt Elliott
Danny Knowles
Don Shea

SeaDAS 7.0

Objective

- Renewal of the "outdated" SeaDAS 6 user interface
- Away from commercial IDL to an open-source approach
- Simplify configuration and launching of SeaDAS L[01] L3 data processors

Collaboration

- Joint effort of NASA Ocean Biology Processing Group (OBPG) and the BEAM development team
- Informal meeting at NASA GSFC in May, 2010
 → Decided that SeαDAS 7 would use the BEAM Development Platform
- Bilateral collaboration started in June, 2011
- Beta Release in June 2012, Final Release April 2013

SeaDAS 7.0 Features

- Exchange of the IDL-based SeaDAS GUI by a frontend based on BEAM VISAT "Rich Client Platform"
- Add BEAM support for OPBP maintained data products
 - Aquarius, CZCS, HICO, MERIS, MODIS, MOS, OCM, OCTS, SeaWiFS,
 VIIRS
- Integrate SeaDAS' robust and fast data processing suite
 - NASA operational OC processors used for production
 - greatly simplified usage of SeaDAS data processors (e.g. l1bgen, l2gen, l2bin, etc.
 - sensor-independent approach
 - data processor user interfaces dynamically created from XML files
 - created by the processing programs.
 - Modifying the programs automatically modifies the
 - Linux and MacOSX only, use virtual machine on Windows platforms

L2gen SeaDAS 7.0

Main Produ	ucts Subsetting Options Thresholds IOP Options Processing Options	Ancillary Inputs	Miscellaneous	Calibration Options
IOP Options				
giop_adg_file	\$OCDATAROOT/common/adg_default.txt			
giop_adg_opt	1 - exponential with exponent supplied via giop_adg_s) ‡			
giop_adg_s	0.0145			
giop_aph_file	SOCDATAROOT/common/aph_default.txt			filter:
giop_aph_opt	2 - Bricaud et al. 1995 (chlorophyll supplied via default empirical algor $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
giop_aph_s	-1000.0			
giop_bbp_file	\$OCDATAROOT/common/bbp_default.txt			filter:
giop_bbp_opt	3 – power–law with exponent derived via Lee et al. (2002)			
giop_bbp_s	-1000.0			
giop_fit_opt	1 - Levenberg-Marquardt optimization 💠			
giop_grd	[0.0949,0.0794]			
giop_maxiter	50			
giop_rrs_opt	1 - Morel f/Q ‡			
giop_wave	[412,443,488,547,667]			
gsm_adg_s	0.02061			
gsm_aphs	[0.00665, 0.05582, 0.02055, 0.01910, 0.01015, 0.01424]			
gsm_aphw	[412.0, 443.0, 490.0, 510.0, 555.0, 670.0]			
gsm_bbp_s	1.03373			
gsm_fit	0 - Amoeba ‡			
gsm_opt	0 – default coefficients 💠			
iop_opt	0 - None (products requiring a or bb will fail) 💠			
qaa_adg_s	0.015			
qaa_wave	!,443,488,547,667]			
	Restore Defaults (IOP Options only)			
				Open in Se
			Run Can	cel Apply

SeaDAS 7.0 Objectives (cont.)

- Improve SeaDAS/BEAM w.r.t. validation activities
- Improvements to the SeaDAS/BEAM point and vector data support (e.g. support for SeaBASS-formatted files)
- Added a global, high resolution land-water mask
- Will add a global, accurate bathymetry map
- Added auxiliary data management (e.g., download, ...)
- Added a simplified interface to the Color Manipulation Tool
- Odds and ends
 - Add a layer for legends in image views
 - Extend processing capabilities to Windows operating system
 - Add additional user-defined preferences
 - Color manipulation tool preferences
 - Processing option preferences

Thanks for your attention!

→ Don't forget: You get instant support in the BEAM and SeaDAS user forums.

Architecture Overview

MERIS Smile Correction MERIS Case 2 Waterconst. MERIS SMAC Atm. Corr.

BEAM VISAT

Common Orthorectification Common Collocation (A)ATSR SST Processor

Common L3 Binning Common L3 Mosaicing Sensor data formats Envisat, Chris, Alos,...

Common Spectral Unmixing Common Kmeans/ EM Clustering Common data formats GeoTIFF, NetCDF, ...

BEAM VISAT RCP Rich client platform

BEAM UI User interface BEAM GPF Graph processing BEAM Core Data Model, I/O

Ceres Core Module Management Ceres GLayer Multi-Layer Views Ceres Binio Binary data I/O Ceres Binding Value binding

JIDE GUI Components JFreeChart Plots & Charts JAI Tiled Imaging Xstream XML binding

Java SE 1.6 Platform

VISAT Module Manager

Generic EO Data Model

Raster Data Management

- Tiled images
- Multi-resolution image pyramids
- Multi-threaded tile processing
- Loading visible tiles, caching invisible
- Allows browsing giga-pixel images

Graph Processing Framework

- Inversion of execution flow, "pull" processing
- Requests are propagated from sink to source: only requested data is processed
- Independent tile computation is parallelised, multi-threading
- Intermediate results are kept in-memory, no I/O overhead

SeaDAS & BEAM

BEAM Success Factors

- Abstraction of EO data products:
 - Generic Product Model (internal representation)
- Abstraction of data input, output, processors
 - Readers, Writers, Operators
- Module-based architecture
 - Every module is a versioned, exchangeable plugin
- Tile-based raster data management
 - Image display
 - Data processing

Python FLH "Processor"

```
flhProduct = Product.newProduct('FLH.nc', 'test',
reflProduct =
                                               width, height)
ProductIO.readProduct(sys.argv[1])
                                               flhBand = flhProduct.addNewBand('FLH',
                                               ProductData.TYPE FLOAT32)
b1 = reflProduct.getBand('reflec 5')
b2 = reflProduct.getBand('reflec 7')
b3 = reflProduct.getBand('reflec 9')
w1 = b1.getSpectralWavelength()
                                               for y in range(height):
w2 = b2.getSpectralWavelength()
                                                  b1.readPixelsFloat(0, y, width, 1, r1)
w3 = b3.getSpectralWavelength()
                                                  b2.readPixelsFloat(0, y, width, 1, r2)
                                                  b2.readPixelsFloat(0, y, width, 1, r3)
a = (w2 - w1) / (w3 - w1)
                                                  print("processing line ", y, " of ", height)
k = 1.03
                                                  FLH = r2 - k * (r1 + a * (r3 - r1))
                                                  flhBand.writePixelsFloat(0, y, width, 1, FLH)
```

