

Introducing GSICS

Tim Hewison¹ (1) EUMETSAT On behalf of GSICS Research Working Group

Global Space-based Inter-Calibration System

• What is GSICS?

- Global Space-based Inter-Calibration System
- Initiative of CGMS and WMO
- Effort to produce consistent, well-calibrated data from the international constellation of Earth Observing satellites

• What are the basic strategies of GSICS?

- Improve on-orbit calibration by developing an integrated inter-calibration system
 - Initially for GEO-LEO Inter-satellite calibration
 - Being extended to LEO-LEO
 - Using external references as necessary
- Best practices for prelaunch characterisation (with CEOS WGCV)

• This will allow us to:

- Improve consistency between instruments
- Reduce bias in Level 1 and 2 products
- Provide traceability of measurements
- Retrospectively re-calibrate archive data
- Better specify future instruments

Global Space-based Inter-Calibration System FUMFTSAT CNFS JMA NOAA KMA इसरी डिल्ट ISRO NASA **WMO** NIS USGS NIST JAXA ROSHYDROMET ESA IMD

GSICS Principles

• Systematic generation of inter-calibration products

- for Level 1 data from satellite sensors
- to **compare**, *monitor* and **correct** the calibration of *monitored* instruments to community references
- by generating calibration corrections
- with specified uncertainties
- through well-documented, peer-reviewed procedures
- based on various techniques to ensure consistent and robust results
- Delivery to users
 - Free and open access
 - Adopting community standards
- To promote
 - Greater understanding of instruments' absolute calibration, by analysing the root causes of biases
 - More accurate and more globally consistent retrieved L2 products
 - Inter-operability for more accurate environmental, climate and weather forecasting products

TRACEABILITY / UNBROKEN CHAINS OF COMPARISONS

Who are the targeted users?

Any activity requiring well calibrated Level 1 data acquired by the satellites covered by

GSICS

- Level 2 products (geophysical parameters)
- Climate applications

Example of user = the SCOPE-CM initiative (Sustained Coordinated Processing of Environmental Satellite Data for Climate Monitoring)

Scope → generate multi-mission and global satellite climate data records (Fundamental CDRs & Thematic CDRs)

The way toward operational production of high quality ECVs on a global scale

GSICS User Community

- Satellite Application Community
 - CDR generation for climate monitoring
 "SCOPE-CM" framework, national/international programs
 WCRP/ISCCP (Planned beta-testing of GEO GSICS Corrections)
 - Reanalysis community for climate modelling (ECMWF reanalysis 2012/15)
 - Operational NWP: direct radiance assimilation
 - Other users interested in accurate/consistent calibration
- Satellite Operators
 - Prelaunch instrument characterization guidelines
 - Cal/Val Plans
 - Best practices for instrument monitoring and improved calibration
- Affiliation with partner programmes
 - CEOS WGCV, GPM X-cal, GHRSST, GRUAN, etc...

GSICS Products

GSICS Bias Monitoring

• Routine comparisons of satellite radiances against reference

GSICS Correction

- Function to correct issued radiances
- For consistent calibration with reference

• GSICS Reports & Guidelines

- Recommendations to modify practices
- Design and Operation of future satellite instruments

• For Operational Environmental Satellites

- Infra-red recalibration (GEO and LEO)
 - (current operational satellites)
- ✓ Visible and near-infrared recalibration (GEO and LEO)
- Microwave Conical & Cross-track Scanners (LEO)
- Historic Instruments

- ✓ Pre-Operational & Demo status
- ✓ Near real-time and re-analysis
- ✓ In development within GSICS
- ✓ In development with GPM XCAL
- ✓ In development at EUMETSAT, ...

GSICS Procedure for Product Acceptance

- Products progress from
 - Demonstration Mode
- Through
 - Pre-Operational Mode
- To
 - Operational Mode
- By a series of reviews
- Over period of ~1.5yr
- Subject to meeting acceptance criteria

Inter-Calibration system

GEO-LEO IR Product Status 2013-04

GPRC	Monitored Instrument	Reference Instrument	GSICS NRT Correction	GSICS Re-Analysis Correction	GSICS Bias Monitoring
EUMETSAT	Meteosat-10} Meteosat-9 } Meteosat-8 } Meteosat-7 }	IASI	Pre-operational Demonstration	Pre-operational Demonstration	Prototype
JMA	MTSAT-1R } MTSAT-2 }	IASI (+ AIRS)	Demonstration	Demonstration	Prototype
NOAA	GOES-13 & -15 Imager GOES-11 & -12 Imager	IASI (+ AIRS)	Pre-operational	Pre-operational Demonstration	Prototype
	GOES Sounder	IASI (+ AIRS)	In development	In development	In development
СМА	FY2C } FY2D } FY2E }	IASI (+ AIRS)	In development	In development	Prototype
КМА	COMS	IASI (+ AIRS)	In development	In development	In development

Full GSICS Product Catalog available at http://www.star.nesdis.noaa.gov/smcd/GCC/ProductCatalog.php

Comparison of Collocated GEO-LEO Radiances

Simultaneous near-Nadir Overpass of GEO imager and LEO sounder

- Collocation Criteria:
- ΔLat<35° ΔLon<35°
- $\Delta t < 5$ mins
- $\Delta \sec\theta < 0.01$ (Atmospheric path diff.)
- Concentrated in tropics
 ~1000 collocations/orbit
 ~1 orbit/night

Schematic illustration of the geostationary orbit (GEO) and polar low Earth orbit (LEO) satellites and distribution of their collocated observations.

Data Transformations (Spectral and Spatial)

•Spectral Convolution:

- Convolve LEO Radiance Spectra with GEO Spectral Response Functions
- to synthesise radiance in GEO channels

Example radiance spectra measured by IASI (black) and modeled by LBLRTM (grey), convolved with the Spectral Response Functions of SEVIRI channels 3-11 from right to left (colored shaded areas). n.b. The IASI observations (645 – 2760 cm⁻¹) do not quite cover the full spectrum observed by SEVIRI.

•Spatial Averaging:

- Average GEO pixels in each LEO FoV
- Estimate uncertainty
 - due to spatial variability
 as Standard Deviation of GEO pixels
- Use in weighted regression

LEO FoV~10km

~ 3x3 GEO pixels

Illustration of spatial transformation. Small circles represent the GEO FoVs and the two large circles represent the LEO FoV for the extreme cases of FY2-IASI, where $n_Xm=3x3$ and SEVIRI-IASI, where $n_Xm=5x5$.

Comparison by Regression

- Compare collocated obs:
- GEO radiance
 - Spatially averaged
- Regressed against
- LEO radiance spectra,
 - convolved with GEO SRF
- Using Variance of GEO radiances + Noise
 - to estimate uncertainty on each collocation

Weighted linear regression of

 $L_{GEO|REF}$ and $< L_{GEO}$ for Meteosat-9 13.4µm channel based on single overpass of IASI

GSICS Products: (1/3) Bias Monitoring

- Comparing samples of x_{MON} , x_{REF}
 - Over fixed domain
 - Period (e.g. 1 orbit/1 day)
 - Typically ~ 1000 comparable samples/day
- Regression
- Calc bias, $\Delta x = x_{MON} x_{REF}$
 - Δx at standard scene, $x_{\rm STD}$
 - with uncertainty
- Plot time series of bias Δx
 - Compare recent results with long-term trend
 - Valuable for instrument monitoring

Example of GSICS Bias Monitoring From EUMETSAT: Time Series of Meteosat10-IASI Standard Biases [K]

This page shows prototype GSICS Bias Monitoring resulting of the inter-comparison of infrared channels of geostationary • Meteosat imagers and the polarorbiting • IASI sounder from collocated observations. The plots show the relative biases between these instruments for standard radiances, corresponding to clear sky scenes over the ocean, in a standard atmosphere. The results from the • inter-calibration algorithm (PDF, 980 KB) can also be downloaded as • GSICS Correction Coefficients (PDF, 79 KB) in • netCDF format (PDF, 66 KB) from • EUMETSAT's GSICS and Product Server.

See the + GSICS Product Status Summary for further details or visit our + GSICS page for a comprehensive list of resources.

Slide: 13 07 May 2013

GSICS Products: (2/3) GSICS Correction

• Compare all x_{REF} , x_{MON} samples – over smoothing period (e.g. 2 weeks)

Regression coefficients

•with uncertainty (covariance)

• Provide a *function* users can apply

•to convert level 1 data, x_{MON}

•to be consistent with calibration of reference, x_{REF}

• Two versions:

Near Real-Time (asymmetric time window)Re-Analysis (symmetric time window)

GSICS Products: (3/3) Guidelines

- Underlying assumption of GSICS Correction:
 - Small errors (e.g. SRF errors, blackbody temperature, ...) introduce small departures from 'true' calibration
 - If these are linearly related to a predictor (radiance, time, ...) we can apply empirical correction based on inter-calibration
- Guidelines can analyse GSICS products
 - to diagnose root causes of calibration errors
- Can derive recommendations to modify
 - operating practices (e.g. adopt new SRF definition),
 - pre-launch characterisation, etc.
- These GSICS Guidelines are distributed as written reports

Where to get the data?

•GSICS Bias Monitoring (prototype)

-Hosted on websites of GSICS Processing & Research Centres (GPRCs)

•GSICS Corrections

- -GSICS Data & Products Servers
- -THREDDS-based system
- NetCDF format
- WMO GTS standard file names
- --- Unidata & CF conventions

-See gsics.wmo.int for links

GTS = Global Telecommunication System CF = Climate and Forecast

GSICS Product Developments 2012

- GSICS Corrections for GEO-LEO IR
 - Now Pre-Operational for Meteosat (EUMETSAT) & GOES (NOAA)
 - Nearly Pre-Operational for MTSAT (JMA)
 - Using MetopA/IASI as reference
- Developing GSICS Products for GEO-LEO VIS:
 - Deep Convective Clouds (DCC)
 - Ocean Targets (Rayleigh Scattering)
 - Lunar & other methods (deserts, liquid water cloud, ...)
- Special Issue

GSICS Product Development Plan 2013

- GSICS Corrections for GEO-LEO IR:
 - Operational Mode for Meteosats, GOES & MTSAT
 - Prototype for other GEOs
 - Delta Correction to transfer MetopA/IASI to MetopB/IASI
 - Quantifying diurnal cycle uncertainties
- GSICS Products for GEO-LEO VIS:
 - Deep Convective Clouds (DCC) -> Demonstration Mode
 - Lunar -> Prototype
 - Ocean Targets (Rayleigh Scattering) + LEO-LEO -> Prototype
 - Other methods -> continue developments
- GSICS Guidelines:
 - How to select a reference instrument
 - How to specify Spectral Band Adjustment Factors (IR+VIS)

GSICS Research Working Group – Sub-Groups

- Define GRWG Sub-Groups
 - to development of inter-calibration products
 - or review algorithms developed by 3rd parties
 - and help ensure GSICS principles, file naming and variables conventions, etc are followed
 - for specific classes of instruments and/or applications.
- Sub-Group chairs shall be responsible for
 - coordinating development and/or review
 - organising & chairing portions of agenda of
 - annual GRWG meeting & web meetings related to their topic,
 - Monitoring actions related to the development of inter-calibration products
 - Reporting progress to Exec Panel & Users'
 Workshops or through GRWG Chair

- Possible Sub-Groups:
 - Microwave
 - Formed, but inactive
 - Visible/Near Infrared
 - Chair: D. Doelling (NASA)-TBC
 - Thermal Infrared
 - Chair: TBD
 - Archive Re-Calibration
 - Generate FCDRs for historic inst.
 - Synthetic Observations
 - e.g. NWP+RTM
 - Hyperspectral IR?
 - UV?
 - ?

Thank You