Revisiting Ocean Color Algorithms for Chlorophyll *a* and Particulate Organic Carbon in the Southern Ocean using Biogeochemical Floats

SOCCOM Profiling Floats

Active floats 80/200

Iridium antenna

pH sensor

Chlorophyll *a* fluorometer Backscattering **FLBB or MCOM** backscattering (β) $\lambda = 700 \ nm$ θ = 150 ° chla fluorescence excitation 470 nm emission 695 nm

Oxygen sensor

Nitrate

Float configuration:

- Park at 1000 m
- Profile from
 - 2000 m to surface
- Profile every 5 or 10 days

APEX biogeochemical float

[WET Labs' Report, 2016; Johnson et al., 2017, submitted]

Ocean Color

• VIIRS

Visible Infrared Imaging Radiometer Suite

- MODIS Aqua Moderate Resolution Imaging Spectroradiometer
- Both satellites are:
 - polar orbiting
 - multispectral (visible and infrared detectors)
 - measure top of the atmosphere radiance
 - apply atmospheric correction
 - derive chla and POC from band ratios

[Mobley et al., 2016; NASA Ocean Biology and Biogeochemistry group]

Previous studies

Globally derived chla algorithm OCX validation in the Southern Ocean.

Bias	Dataset Type	Satellite(s)	Reference(s)
2.4	Fluorometrically extracted chla	CZCS	Mitchell and Holm-Hansen [1991] Sullivan et al. [1993]
~2	Fluorometrically extracted chla	SeaWiFS	Dierssen and Smith [2000]
~2	HPLC	ADEOS SeaWiFS MODIS	Mitchell and Kahru [2009] Kahru and Mitchell [2010]
~2	HPLC	MODIS	Guinet et al. [2013]
3-4	HPLC	MODIS VIIRS	Johnson et al. [2013]
1	HPLC	SeaWiFS	Marrari et al. [2006]

SOCCOM floats

- Spatially spread
- Cover 5 seasonal cycles (2012-2017)
- Bio-optical sensors calibrated with HPLC and POC samples

Calibrate chlorophyll *a* fluorometers

Fluorescence is a proxy for chlorophyll a

chla:fluorescence yield ratio is affected by: the light history, the species composition, and the physiology of the phytoplankton.

Sensor inter- calibration	Dark correction	Non Photochemical Quenching	Slope correction	
 calibrate all sensors against a "golden" sensor 	 correct for interference with fluorescent dissolved organic matter find(min([chla])) at depth and subtract it from all profiles similar correction as in <i>Xing et al.</i> [2016] 	 if sun_elevation > 5° mean(chla_{Xing2012}, chla_{Sackmann2008}) FYI: No significant difference day-only or night-only data. 	 compare first profile with [chla] from HPLC taken within 24 hours of deployment (Roesler et al., 2017) 	

Relationship between total chlorophyll *a* from HPLC and chlorophyll *a* fluorescence from floats

From backscattering to POC

estimated with Sullivan et al., [2013]

$$b_{bp} = 2 \times \pi \times \chi_{p(\theta)} \\ \times (\beta(\theta) - \beta_{sw}(\theta))$$

Relationship between POC and particulate backscattering at 700 nm

Deriving chla and POC from R_{rs}

Download images from NASA Ocean Color Level 2, reprocessing R2014.0

Product	Sensor	Algorithm	Equations		
chla	MODIS	OCI^a	Merged OC3M band ratio algorithm		
			with color index (CI) of $Hu \ et \ al.$ [2012]		
chla	MODIS	$J13^{b}$	$R_{sw} = \log_{10} \left(\frac{\max(R_{rs}(443), R_{rs}(488))}{R_{rs}(547)} \right)$		
			$chla_{J13} = 10^{0.6994 - 2.0384 R_{sw} - 0.4656 R_{sw}^2 + 0.4337 R_{sw}^3}$		
chla	MODIS	$SPGANTv4^{c}$	$L_{wn}(\lambda) = \frac{F_0(\lambda) \times R_{rs}(\lambda)}{\pi}$		
			$R = log_{10} \left(\frac{max(L_{wn}(4\dot{43}), L_{wn}(488))}{L_{wn}(547)} \right)$		
			$chla_{SPGANTv4} = 10^{0.5514 - 2.2434R + 0.0746R^2 - 0.0095R^3 - 0.7790R^4}$		
			blended with OC3M [Kahru and Mitchell, 2010]		
chla	VIIRS	OCI^a	Merged OC3V band ratio algorithm		
			with color index (CI) of $Hu \ et \ al.$ [2012]		
chla	VIIRS	$J13^{b}$	$R_{sw} = \log_{10} \left(\frac{\max(R_{rs}(410), R_{rs}(443), R_{rs}(486))}{R_{rs}(551)} \right)$		
			$chla_{J13} = 10^{0.6736 - 2.0714 R_{sw} - 0.4939 R_{sw}^2 + 0.4756 R_{sw}^3}$		
POC	MODIS	$S08^d$	$POC = 203 \times \left(\frac{R_{rs}(443)}{R_{rs}(547)}\right)^{-1.034}$		
POC	VIIRS	$S08^d$	$POC = 203 \times \left(\frac{R_{rs}(443)}{R_{rs}(551)}\right)^{-1.034}$		
^a Hu et al. [2012]					
^b Johnson et al. [2013]					

^cKahru and Mitchell [2010]; Mitchell and Kahru [2009]

^dStramski et al. [2008]

Matching up

Maximize the quality of the samples:

- narrow time window (+/- 3 hours)
- mean 5x5 pixel box centered on float profile
- good atmospheric correction (mask level 2 flags)
- Weighted vertical integration.
- > Very few matchups with MODIS

Explained by:

- floats' surface time is not synchronized with satellites' overpasses
- polar night, high solar zenith angle (> 70[°])
- high cloud coverage all year long

Maximize Number of Matchups

- Widening spatial (8 km) and temporal (24 hr) window
 - increase the number of matchups
 - at the possible cost of quality

[IOCCG Report, 2011]

Comparison with Remote Sensing

Sensor	Algorithm	Slope	Offset	\boldsymbol{n}	r^2	RMSD	RMSURD
		Linear	Linear		Linear	Linear	Linear
MODIS	OCI	$0.88(\pm 0.04)$	$0.01(\pm 0.01)$	173	0.67	0.11	0.45
MODIS	J13	$0.35(\pm 0.02)$	$0.07(\pm 0.01)$	173	0.66	0.43	0.74
MODIS	SPGANTv4	$0.41(\pm 0.02)$	$0.05(\pm 0.01)$	173	0.70	0.35	0.68
VIIRS	OCI	$1.09(\pm 0.05)$	$-0.02(\pm 0.01)$	203	0.61	0.10	0.44
VIIRS	J13	$0.49(\pm 0.03)$	$0.05(\pm 0.01)$	203	0.49	0.28	0.62
both	OCI	$0.97(\pm 0.03)$	$-0.00(\pm 0.01)$	376	0.63	0.10	0.45

Regional variability:

SIZ: Sea Ice Zone PAZ: Polar Antarctic Zone SAZ: Subantarctic Zone STZ: Subtropical Zone

Maximal spatial variability off slope with regions ~20%.

Temporal variability: Not significant.

Independent dataset

all the data available on February 1, 2017, south of 30 °S, on SeaBASS 6242 HPLC samples from 1682 profiles between Oct 1995 and April 2011

Out of the 659 matchups only 97 respected the criteria defined earlier MODIS OCI matchups

```
chla_{HPLC} = 1.15(\pm 0.11) \times chla_{sat} + 0.05(\pm 0.11)
RMSD = 0.78 mg m<sup>-3</sup>
RMSURD = 0.59
N = 97
```

Comparison with Remote Sensing

Sensor	Algorithm	Slope	Offset	n	r^2	RMSD	RMSURD
		Linear	Linear		Linear	Linear	Linear
MODIS	POC	$0.94(\pm 0.06)$	$-11.47(\pm 5.08)$	173	0.37	31.46	0.44
VIIRS	POC	$1.15(\pm 0.07)$	$-14.30(\pm 5.41)$	203	0.34	28.60	0.38
both	POC	$1.05(\pm 0.05)$	$-12.85(\pm 3.79)$	376	0.33	29.95	0.41

Conclusion

- OCI performs well in the Southern Ocean
 - bias in our dataset of 9 % for VIIRS and 12 % for MODIS
- POC agrees well with float products
 - relatively low prediction capability

In addition, autonomous floats can be used as a third dimension (depth) to complement remote sensing in the Southern Ocean (4D)

Thank you !

Questions ?

Previous studies

- Under-estimation of global chla algorithm:
 - Species composition
 - Physiology
 - Particulate Composition
- Spatially limited:
 - > 95 % in narrow corridor south of Tasmania [Johnson et al., 2013]
 - Primarily in the Scotia Sea [Mitchell and Kahru, 2009]
- Seasonally limited:
 - Primarily austral summer

Regional Trends with SeaBASS Dataset

