Resetting the baseline for phytoplankton in situ measurements:

Can we routinely measure phytoplankton diversity and size?

Heidi M. Sosik

Current baseline for in situ phytoplankton measurements

Advent of fluorometry in 1960s and 1970s

Lorenzen, 1966

Herman and Denman 1977

Gieskes et al. 1978

Current baseline for in situ phytoplankton measurements

Chlorophyll vs. distance along track

US\$39.00!

Gordon et al. 1980

Beyond chlorophyll...

Reports and Monographs of the International Ocean-Colour Coordinating Group

An Affiliated Program of the Scientific Committee on Oceanic Research (SCOR)

An Associated Member of the (CEOS)

IOCCG Report Number 15, 2014

Phytoplankton Functional Types from Space

9 algorithm comparison

Wide discrepancy in seasonality for "large" / diatom-like PFT

Kostadinov et al. 2017

Beyond chlorophyll....

Can we routinely measure

phytoplankton diversity and size?

Quantitative cytometry

Cytometry (n.): The counting and measuring of cells, especially the counting and analysis of cell size, morphology, and other characteristics.

Flow Cytometry

Conventional

Single cell, typical measurements:
Chlorophyll fluorescence
Light scattering (forward, side angle)
Phycoerythrin fluorescence
Sosik et al. 2014

Flow Cytometry

Imaging-in-Flow

Automated and submersible flow cytometry

Circa 2001

FlowCytobot

Optimized for picoplankton

2017

Imaging FlowCytobot

Optimized for microplankton

* McLANE

SPC

FlowCam

SeaFlow

CytoSense

LISST-Holo

Jupiter microscope

Automated and submersible flow cytometry

Circa 2001

FlowCytobot

Optimized for picoplankton

2017

Imaging FlowCytobot

Optimized for microplankton

→ Observational capabilities

Enumeration, identification, and cell sizing

Thousands of individual plankton

→ Extended deployments

Automated standard analysis, selfcleaning, and humidity sensing

> 6 months unattended

Taxonomic composition

Circa 2001

FlowCytobot

Optimized for picoplankton Martha's Vineyard Coastal Observatory

Hunter-Cevera et al. 2016

Taxon-specific
High resolution & Long duration

Taxonomic composition

Imaging FlowCytobot

Optimized for microplankton

Martha's Vineyard Coastal Observatory

Harmful algal bloom – species-specific observations

Imaging FlowCytobot

Gulf of Mexico

Campbell et al. 2010

Campbell et al. 2013

Nauset Estuary, MA

Brosnahan et al. 2015

Size and biomass budgets

Pico/nanoplankton

FlowCytobot

Cell volume from laser scattering

Cell carbon from cell volume

Carbon =
$$\sum_{i} C_{i}$$

$$C_i = f(V_i)$$

e.g., Menden-Deuer & Lessard 2000

Nano/microplankton

Imaging FlowCytobot

Cell volume from image analysis "distance map" approach

Sosik and Olson 2007 Moberg & Sosik 2012

Size and biomass budgets

Individual cells → **Taxa** → **Communities**

Many diatom species

Carbon

Size and biomass budgets

Individual cells → **Taxa** → **Communities**

Individual cells → Size classes → Communities

March

March

MVCO 2006-2016; monthly mean (——) 25th and 75th percentiles (····)

Phytoplankton ≠ Spheres

Challenges for a baseline reset

Conceptual

- Size metrics
- Biomass metrics
- Taxonomic gaps

N.B., many picoeukaryotes and small nanoplankton

Nuts and bolts and bits

- > Instrument development
- Operational quality control
- Analysis

Community building

- Data sets
- Annotated data
- Algorithms and workflows

Biomass estimation – comparing metrics

Flow Cytometry

Implied Carbon: Chl variations very large

diatoms ~10 dinoflagellates ~50 cyanobacteria ~250

Chlorophyll ≠ Carbon

Challenges for a baseline reset

Conceptual

- Size metrics
- Biomass metrics
- Taxonomic gaps

N.B., many picoeukaryotes and small nanoplankton

Challenges for a baseline reset

Conceptual

- Size metrics
- Biomass metrics
- Taxonomic gaps

N.B., many picoeukaryotes and small nanoplankton

Nuts and bolts and bits

- Instrument development
- Operational quality control
- Analysis

Instrumentation targets

Smaller size

Lower power

Lower cost

→ Accessibility & deployment modes

Sensitivity and dynamic range e.g., the *Prochorococcus* challenge

Sampling volume & resolution

ca. 2005 2012 2017 Original Optimized Commercial prototype design unit

Imaging FlowCytobot

Integrated anti-fouling & quality controgood...but not good enough!

Enhanced onboard processing

. . .

Integrated quality control

In situ standard analysis

Reservoir with fluorescent microsphere suspension

Automated analysis as "sample"

Integrated quality control

Data analysis and interpretation

Cell volume calibration with culture analysis

Data analysis and interpretation

Cell volume calibration with culture analysis

~1 µm cells

1 μm bead normalized

→ Cells 10-fold lower scattering than beads of same size

Phytoplankton ≠ Plastic beads

Data analysis and interpretation

~800 million images of many species

Sosik and Olson 2007 Peacock et al. 2014

Image processing

Feature extraction

Classification, machine learning

Expert labeled training sets

Challenges for a baseline reset

Conceptual

- Size metrics
- Biomass metrics
- Taxonomic gaps

Nuts and bolts and bits

- Instrument development
- Operational quality control
- Analysis

Community building

- Data sets
- Annotated data
- Algorithms and workflows

Community building and shared resources

Shared data sets

http://ifcb-data.whoi.edu/

Shared annotations training sets / expert taxonomy

http://dx.doi.org/10.1575/1912/7341

Shared algorithms and code repositories

https://github.com/hsosik/ifcb-analysis

https://github.com/joefutrelle/ifcb-dashboard

Standards for products,

with provenance to raw data and processing workflows

→ Promote reproducibility and support reprocessing

Acknowledgments

Rob Olson

Emily Brownlee
Taylor Crockford
Joe Futrelle
Kristen Hunter-Cevera
Ben Lambert

MVCO Operations Team

Emily Moberg
Emily Peacock
Alexi Shalapyonok

Challenges and prospects for a baseline reset

Conceptual

- Size metrics
- Biomass metrics
- Taxonomic gaps

Nuts and bolts and bits

- Instrument development
- Operational quality control
- Analysis

Community building

- Data sets
- Annotated data
- Algorithms and workflows

Current baseline for in situ phytoplankton measurements

500

400

Chlorophyll vs. distance along track

200

100

Distance (km)

300

Gordon et al. 1980

Baseline reset?

Diatom Biomass

MODIS PFT product

Kim Hyde