

Status of JPSS-2 VIIRS Pre-launch Calibration and Characterization

J. Xiong¹, J. McIntire², and H. Oudrari²

¹NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ²Science Systems and Applications Inc., Lanham, MD 20760, USA

Acknowledgements:

JPSS Flight Project (NASA), JPSS Program (NOAA), Raytheon SAS, and VCST (NASA)

Outline

- Status of J2 VIIRS Pre-launch Testing
- J2 VIIRS Pre-launch Performance
 - Radiometric , spectral, spatial, and other performance parameters, such as polarization, stray light, ...
- Summary
 - Lessons and future work

VIIRS on S-NPP and JPSS-1/2/3/4

- S-NPP: launched in Oct 2011
- JPSS-1: launched in Nov 2017
- JPSS-2: launch in March 2022
- JPSS-3/4: launch in 2026/2031

Status JPSS-2 VIIRS PL Testing

- Ambient: April Aug 2016
- Pre-TVAC: March May 2017
- TVAC: June Oct 2017
- Post-TVAC: Nov Dec 2017
- S/C Testing: 2020
- Launch: March 2022

22 bands (16 M-band, 5 I-band and 1 DNB)

	Band	λc(nm)	∆λ(nm)	Spatial Resolution (m)	MODIS Equivalent Band	
VisNIR	DNB	700	400	750		
	M1	412	20	750	B8	
	M2	445	18	750	B9	
	M3	488	20	750	B3-B10	
	M4	555	20	750	B4-B12	
	M5	672	20	750	B1	
	11	640	80	375	B1	
	M6	746	15	750	B15	
	M7	865	39	750	B2	
	12	865	39	375	B2	
SMWIR	M8	1240	20	750	B5	
	M9	1378	15	750	B26	
	M10	1610	60	750	B6	
	13	1610	60	375	B6	
	M11	2250	50	750	B7	
	14	3740	380	375	B20	
	M12	3700	180	750	B20	
	M13	4050	155	750	B21-B22-B23	
LWIR	M14	8550	300	750	B29	
	M15	10763	1000	750	B31	
	15	11450	1900	375	B31-B32	
	M16	12013	950	750	B32	

- 7 dual gain bands: M1-M5, M7, and M13
- 22 EDRs (research/operational applications)

JPSS VIIRS Pre-launch Test Program

Program developed with lessons from S-NPP VIIRS and MODIS

<u>Objectives:</u>

- Characterize sensor performance
 - Radiometric (SNR/NEdT, detector gain, and dynamic range, ...)
 - Spectral (IB and OOB RSR, ...)
 - Spatial and geometric (BBR, MTF, ...)
 - Others (polarization, RVS, stray light, crosstalk, ...)
- Ensure that **sensor performance** meets its design requirements and that **data quality** is adequate to achieve overall science objectives
- Collect and analyze testing data (independently by instrument vendor and government teams) to help derive and verify key sensor parameters for its on-orbit operation and calibration
- Develop and support implementation of mitigation strategies to address potential non-compliances

RSB Radiometric Performance

- Reflective solar bands (RSB): meeting nearly all requirements for dynamic range, gain transition and SNR (as good as J1)
 - Minor non-compliances
 - M8 (96% of dynamic range) improved over J1
 - Issues requiring special attention
 - J1 nonlinearity issues corrected in J2 (SWIR and DNB)

RSB Radiometric Performance (examples)

DNB response (dn vs input radiance)

SWIR response (attenuated/direct)

TEB Radiometric Performance

- Thermal emissive bands (TEB): meeting nearly all requirements for dynamic range, non-linearity, NEdT, uncertainty, and uniformity (comparable across all sensors
 - Minor non-compliances
 - Small OBC BB <u>non-uniformity</u> observed in TV (up to 50 mK vs 30 mK spec)
 - Cryo-cooler margin led to decision to set CFPA temperature at 82 K (some impact on NEdT and gains)

TEB Radiometric Performance (examples)

ARD Performance (%)												
Temp (K)	14	15	M12	M13	M14	M15	M16A	M16B				
190	~	~	~	~	0.68	0.29	0.17	0.25				
230	~	~	7.60	2.95	0.11	0.07	0.08	0.04				
267	0.48	0.10	~	~	~	2	~	~				
270	~	~	0.24	0.15	0.08	0.05	0.04	0.04				
310	~	~	0.25	0.17	0.11	0.06	0.03	0.04				
340	~	~	0.27	0.18	0.09	0.05	0.03	0.03				
ARD Specification (%)												
Temp (K)	14	15	M12	M13	M14	M15	M16A	M16B				
190	~	~	~	~	12.30	2.10	1.60	1.60				
230	~	~	7.00	5.70	2.40	0.60	0.60	0.60				
267	5.00	2.50	~	~	~	2	~	~				
267 270	5.00 ~	2.50 ~	~ 0.70	~ 0.70	~ 0.60	~ 0.40	~ 0.40	~ 0.40				
267 270 310	5.00 ~ ~	2.50 ~ ~	~ 0.70 0.70	~ 0.70 0.70	~ 0.60 0.40	~ 0.40 0.40	~ 0.40 0.40	~ 0.40 0.40				

Similar absolute radiometric uncertainty (ARD) performance for J1 and J2 VIIRS TEB

Spectral Performance

- J2 VIIRS spectral performance as good as J1
 - Successful measurements with NASA GLAMR (same system to be used for future JPSS/VIIRS, Landsat/OLI, and PACE/OCI testing)
 - Official RSRs
 - V1: released in August 2018 (SpMA data)
 - V2: to be released in June, 2019 (SpMA + GLAMR measurements)
 - Minor non-compliances for DNB CW and M14 and I5 BW

SIRCUS: Spectral irradiance and Radiance Calibrations with Uniform Sources **GLAMR:** Goddard Laser for Absolute Measurement of Radiance

Polarization Characterization

- Improved polarization performance with lessons from J1 and redesigned filters
- Non-compliance: M1 DoLP up to 5% (J1: M1-M4 failed to meet the spec)

Other Key Performance Parameters

- Response Versus Scan-angle (RVS)
 - Uncertainty is under 0.06% for all RSB bands (vendor UC budget allocation: 0.3%) and under 0.15 % for all TEB bands except 0.6% for M14 (UC budget allocation: 0.2%)
 - Less HAM side differences than J1
- Stray Light
 - Near Field Response (NFR) and Stray Light Rejection are comparable to SNPP and J1
 - Meet SLR specification at BOL
 - M5 and M7 are predicted to fail the SLR requirements at the EOL

Summary

- J2 VIIRS pre-launch test program executed as planned
 - Overall performance is good and as expected based on the results derived from sensor TVAC testing
 - A number of improvements made to address issues identified in J1 VIIRS
 - A few non-compliances (less than J1) identified and reviewed with impacts assessed and mitigation strategies implemented
 - Lessons from S-NPP/J1/J2 to be applied for J3/J4 VIIRS (in I&T/develop phase)
 - Ready for spacecraft I&T (regular checkouts during storage)
 - Additional work on DNB stray light reduction proposed based on lessons from S-NPP and N-20 DNB performance (NASA code 300 review on April 4, 2019)

Backup Slides

VIIRS Instrument and On-board Calibrators

Strong MODIS Heritage (Raytheon)

Sensors with Comprehensive On-orbit Calibration Capability → Extensive Pre-launch Tests