

International Ocean Colour Science Meeting 2019

Advancing Global Ocean Colour Observations

How can Imaging Flow Cytometry serve Ocean Color Science?

Jianping Li, Claude

中国科学院深圳先进技术研究院 SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES

April 9, 2019@Busan, South Korea

Remote Sensing of Ocean Color for Phytoplankton Observation

Global Upper Ocean Chl a

Global average Chl *a* distribution by VIIRS

Image credit NOAA STAR Ocean Color

Detection of Phytoplankton Composition

Dominant Blooming Group

Bloom possibly caused by coccolithophorids, by MODIS-Aqua @ Bay of Biscay, France, 2004

Multiple Phytoplankton Functional Types

Shang, SL et al. J. Geophys. Res. 2014.

Phytoplankton Functional Type Algorithms

Mouw, C.B., et al., Frontiers in Marine Science, 2017.

In situ Methods of Measuring Phytoplankton Functional Types: Providing the Sea-truth!

Table 2.3 Approaches for characterizing phytoplankton, with summaries of advantages, limitations, and relevance to advancing remote sensing applications.

Method	Advantages	Limitations	Relevance to Remote Sensing		
Micros- copy	 Only current method capable of identifying nearly all physic planktom Capital investment in equip- ment is low (a ideast for light microscopy) Iquipment maintenance is relatively straightforward 	Time consuming Identification dependent on experi knowledge and subjective interpretation Experts in phytoplankton rationomy are increasingly rare Assumptions required to convert to blowdume and thomass Enumeration of small cells (picoplankton) re- quires the use of epithaeroscence microscopy – identification of small cells (picoplankton) re- guires the use of epithaeroscence microscopy – identification of small cells (picoplankton) to species level difficult – Sansitive to methods used to collect and con- centrate cells – Proservation techniques do ner work equally well for all taxa	Assumptions required to link cell courts to estimates of plgmern blornass Small sample sizes lead to large moernamices in contribution of rare cells, which can be large creatiburors to blornass (due to large cell size) Cell courts have to be supplemented with cell size information to estimate phytoplankton size structure		
Пам Су- котноу	Automatic and fast Picoplanition are readily ob served Incaping in flow provides access to microplanition Ponomial for optically est mand cell size In situ tools available	 Specialized insuraments required to assess entire phytoplankton size range i-desuffication is often possible only to the level of certain phytoplankton groups in insuramentation is expensive and delicate; requires expert user 	Assumptions required to link cell courns to pigment biomass Cell attendance and cell size infor- mation can be converted to group- specific biovolume or carbon biomass		
HPLC:	- Automatic and precise - Basis of chemotaxonomy	 Few unambiguous marker pigments Sensitive to assumptions about pigment ratios Uncertainty caused by intra group variability in pigment ratios (e.g., with growth conditions) Expensive Prev experts and facilities, globally Comparison between laboratories confounded by differences in methodology (e.g., solvents, column materials) No in situ tools 	Group-specific plyment blomass streecily compared Used excensively for development and validation of algorithms		
Molecular Methods	Taxa can be targeted with high degree of specificity Particular functions can be targeted directly In situ tools emerging	 Only a few probes now available Method development and testing time consuming Relatively expensive and requires specialized equipment 	Largely unsested		
Inherent Optical Properties	 Most methods are relatively simple and inexpensive Many available tools, <i>in sha</i> and laboratory 	 Assumptions required to convert between optical properties and blomass Uncertainty in some methods caused by intra- and inter-group variability in optical properties (e.g., due to growth condition, taxonomy, etc.) 	Measurements directly linked to theoretical basis for remote sensing of phytoplankton		
Huorescence Excita- tion and Embston Spectra	Simple and Inexpensive method for extracted chirophyli con- contration In two excitation and emission spectra useful for some group specific assessment Rapid and eazy In situ cods available	 Interpretation of in vivo fluorescence signal is complex and dependent on rationomy and physiology Assumptions required to convert in vivo signals to biomass. Uncertainty caused by imra-group variability in pligments and associated fluorescence. 	Basis of most total phytoplankton biomass assessments Used in active-passive remote sens- ing to detect phytoplankton types from laser-based remote sensing from alterative Solar-induced chlorophyli illustres- conto is amenable to remote sensing.		
Successive Filuration	- ifelarively simple	Cell bireskage and filter clogging can lead to inaccuracies Prartical constraints impose limits on the num- ber of size classes that can be measured Time consuming No taxonomic information	Mosa direct assessment of size-based biomass		

Chapter 2, P37

Phytoplankton

Great Heterogeneity and Diversity in Size, Morphology, Mobility, Abundance, Distribution, Pigment composition, Physiology Non-phytoplankton.....

In situ Methods for Phytoplankton Observation

	Methodologies	Field-deploy Capability	Field-deploy Time Span	Quantitation Capability	Taxonomy Specificity	Sizing Capability	Detection Throughput	Sampling Frequency
	Fluorimetry	****	****	*	*	×	***	****
Water E	Spectrophotometry	****	****	*	*	×	***	****
ncomblo	HPLC	*	NA	*	*	*	***	*
	Molecular Methods	*	*	*	****	×	**	*
	Manual Microscopy	**	*	***	****	>10µm	*	*
Calline	Automated Microscopy	*	NA	**	***	>10µm	**	**
	Flow Cytometry	***	***	$\star \star \star$ $\star \star \star \star$ >10µm \star \star $\star \star$ $\star \star \star$ >10µm $\star \star$ \star $\star \star$ $\star \star \star$ >10µm $\star \star$ \star $\star \star \star$ \star 0.5µm-10µm $\star \star$ \star $\star \star \star$ $\star \star \star$ >10µm $\star \star \star$ \star	***			
	Imaging Flow Cytometry	***	***	***	***	>10µm	***	***

Imaging-in-flow Concept

Combining Optical Microscopy with Flow Cytometry

Bright-field IFC: FlowCAM

Christian K. Sieracki, et al., Marine Ecology Progress Series, 1998.

Image credit: Fluid Imaging Technologies

Challenges for High-throughput Phytoplankton BF-Imaging

Imaging speed vs. Imaging quality – Lateral-motion blur

Higher Mag.(resolution) vs. Shallower DOF – Axial defocus blur

Images from internet for conceptual illustration

BF-IFC: Imaging FlowCytobot (IFCB)

- 1. Olson R J, Sosik H M. Limnology and Oceanography: Methods, 2007.
- 2. Sosik H M, Olson R J. Limnology and Oceanography: Methods, 2007.

Characteristic of Bright Field-IFC

Pros:

- Morphology analysis consistent with Taxonomist experience
- LIF of chl a trigger
- FC function integrated (IFCB)
- Field/in situ deployment
- Specialized image analysis algorithms

Cons:

- Limited throughput
- Low sensitivity
- Limited sizing range
- Complex fluidic manipulation
- Particle enumeration calibration needed

Amnis Series MS-TDI-IFC

Image credit: Luminex Corporation

Amnis Series MS-TDI-IFC

Image credit: Luminex Corporation

Characteristic of MS-TDI-IFC

Pros:

- Multispectral multimodal (fluorescence) imaging
- Time delay integration (TDI) imaging
- Extended DOF by wavefront coded element and computation

Cons:

- Limited throughput
- Narrow sizing range
- Hydrodynamic focusing needed
- Complexity/High cost
- Not for field/in situ
- Not specialized for natural phytoplankton water sample

DH-IFC

Zetsche Eva-Maria, et al., Limnology and Oceanography: Methods, 2014

Al-enabled DH-IFC

Al-enabled DH-IFC

Grcs, Z., et al., Light Sci Appl, 2018

Al-enabled DH-IFC

Phase recovered phase-contrast images@1.6mL/min

Motion-blur emerges with increase in throughput

Grcs, Z., et al., Light Sci Appl, 2018

Characteristic of DH-IFC

Pros:

- New features of phase beyond morphology
- Wider sizing range by extended DOF (computational refocusing)
- Simpler optics for field/in situ instrumentation
- Computational demand released by DNN and GPU

Cons:

- Throughput still limited by lateral motion blur
- Poor sensitivity for pico-
- Poor phyto-specificity
- Particle enumeration calibration needed

Imaging-in-Flow: Concept Revisit

Light-sheet Fluorescence IFC

J. Wu, J. Li, and R. K. Y. Chan, Opt. Express, 2013.

3D Tomographic LSF-IFC

Mag: 40x

J. Wu, J. Li, and R. K. Y. Chan, Opt. Express, 2013.

2D Focus-Stacking LSF-IFC

Mag: 40x

FOV: 200µmx200µm

Resolution: Hz-0.75µm

Flow rate: 1mL/min

 $2000 times \uparrow$

Wu J.L, Chan R.K.Y., Optics Express, 2013.

Two-color 2D LSF-IFC

Li JP, Xu ZN, Chan R, Focus on Microscopy, 2016.

Chl a-PE Imaging

Mag:20x

FOV: 300μmx300μm

Resolution: Hz-1µm

Flow rate: 1mL/min

Li JP, Xu ZN, Chan R, Focus on Microscopy, 2016.

Quantifying Phytoplankton Variables from Images

LSF-IFC Features

High imaging quality

- High resolution/contrast
- No motion-/defocusing-blur
- 3D/2D imaging

High throughput

- Volume rate reaches to several ml/min for larger cells
- Cell detection rate reaches to •
 >10⁵ counts/s for pico-

Broad sizing range

- ~1-300µm
- Preservation of fragile colonial and chain species

High counting accuracy

 No cell enumeration calibration needed

High sensitivity

- Laser-induced fluorescence
- Picophytoplankton detectable

High specificity

- Chl a autofluorescence imaging
- Immune to bubbles and most nonphytoplankton particles
- Multi-color imaging
 - Chla channel for larger cell recognition
 - Pigment analysis for more

Add-on function

- Chl a fluorimetry with little CDOM contamination
- Methodological simplicity and
 flexibility for instrumentation!!!

Towards Field Deployment

2018: FluoSieve instrument

2019: Integrated system for ship-borne

Coastal Observatory

On-board Labs

Computation & Communication

Research Vessel

Power & Seawater Supply

Ecological Buoy

Automatic Image Analysis

Classical Machine Learning Multi-

Image preprocessing

- Background subtraction
- Restoration by deconvolution
- Image homogenization

Image segmentation

- Image denoising
- Image enhancement
- Multi-thresholding
- Binary mask
- Crop to sub-image collage

Feature extraction

- Geometric
- Texture
- Intensity

•

Training classifier

- SVM
- Random forest
-

parameter Statistics

- Histogram
- Scattering plot
- Multi-variate analysis

•

- **Deep Learning**
- Large-scale database
- CNN modeling and training
- •.....

Analysis Example

7 Cultured Species

1. No	Ð		0	٢	8	Akashiwo sanguinea		
¢	S	8	Ø	0	42	Prorocentrum donghaiense	0	
		0	e		Ø	Heterosigma akashiwo	44	. 0
٠	*		*	٠		Chaetoceros muelleri		
1	l	1	1000		1	Chattonella marina	0	
0	5ge		\$	9	\$	Alexandrium tamarense	South States	
+	in .	+	•	-	-	Nitzschia closterium		

Unpublished!

Analysis Example

SVM Classifier

Unpublished!

Geometric features for measurement

Sea Test on Boat

Sea Test inside the Boat Lab

Sea Test on the Boat Deck

First Images of Natural Sample

How can IFCs serve OCS?

Current Limitations

- Time consuming
- Identification dependent on expert knowledge and subjective interpretation
- Experts in phytoplankton taxonomy are increasingly rare
- Assumptions required to convert to biovolume and biomass
- Enumeration of small cells (picoplankton) requires the use of epifluorescence microscopy
- Identification of small cells (picoplankton) to species level difficult
- Sensitive to methods used to collect and concentrate cells
- Preservation techniques do not work equally well for all taxa
- Specialized instruments required to assess entire phytoplankton size range
- Identification is often possible only to the level of certain phytoplankton groups
- Instrumentation is expensive and delicate
- requires expert user

IFC Capability or Potential

- High-throughput and more
- ✓ HI+AI! Develop AI asap
- Further study with increase in analysis throughput, which is obviously a plus
- ✓ TDI-IFC and LSF-IFC can do
 - Developing MCF-IFC and combine with molecular methods
- Developing field deployable IFCs with minimum water sample pretreatment
- ✓ LSF-IFC already enlarged sizing range, further enhance IFC sensitivity, resolution and FOV
- IFC provides morphological details and molecular specificity
- Manual work could be more expensive
- ✓ Better UI design and training, attract talents

Acknowledgements

洗训大

Prof. SL Shang Prof. BQ Huang Dr. JX Chen Mr. G Lin Mr. Y Gao

Dr. HR Chen

Ms. WJ Jian

中国科学院深圳先进技术研究院 HENZHEN INSTITUTES OF ADVANCED TECHNOLOGY HINESE ACADEMY OF SCIENCES Mr. JC Lv Mr. Leon Chen Dr. GH Jiao

Mr. XL Huang

Supported by:

Mr. Mark Luk Dr. QM Peng Mr. HL Zhang

1. Hundred Talents Program of CAS

- 2. MEL Visiting Fellowship (MELRS1771)
- 3. Xcube Technology Co., Ltd.

中国科学院深圳先进技术研究院 SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES

梦想成就未来 应用创造价值

Comments and Advices are Welcome!

Please contact: jp.li@siat.ac.cn

THANK YOU FOR YOUR ATTENTION!