Imaging systems for high altitude platforms

Mike Twardowski and Bing Ouyang

HARBOR BRANCH

FLORIDA ATLANTIC UNIVERSITY

Vittorio Brando Consiglio Nazionale delle Ricerche

Graham Sandborn

European missions for Aquatic Earth Observation Copernicus Sentinel 3 OLCI: global observer

Mouw, Greb, Aurin, DiGiacomo, Lee, Twardowski, Binding, Hu, Ma, Moore, Moses, and Craig. 2015. Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. *RSE*, 160:15-30.

<u>Hestir, Brando, Bresciani, Giardino, Matta, Villa, and Dekker</u>. 2015. Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. *RSE*, 167:181-195.

European missions for Aquatic Earth Observation Copernicus Sentinel 2 MSI: fine scale/coastal

Mouw, Greb, Aurin, DiGiacomoriter, Twandowski, Binding, Hucks Moore, Moses, and Craig. 2015. Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. *RSE*, 160:15-30. Hestir, Brando, Bresciani, Giardino, Matta, Villa, and Dekker. 2015. Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. *RSE*, 167:181-195.

Intelligent image acquisition

Digital Micromirror Device

- Array of millions of micromirrors
- Each mirror has binary reflection response
- Dither patterns (off/on patterns) can be adjusted at 40 kHz
- Allows highly flexible front end optical filtering

CubeSat DMD Imager Design

Spatial line imaging

50 km

- Place a **Digital Micromirror Device (DMD)** in optical path
- Image a <u>linear spatial scene</u> onto the DMD in the vertical dimension V, hyperspectral bands in horizontal dimension N (i.e, pushbroom type imager)
- Replace array detector with highly sensitive single detector (e.g., PMT or APD)
- Decrease data loading to M << (V × N)
- Use adaptive filter codebooks (i.e., DMD dither patterns) to maintain SNR under different environment conditions
- Image reconstructed at ground station using complimentary codebook
- Ocean color, thermal, bioluminescence...

HARBOR BRANCH

FLORIDA ATLANTIC UNIVERSITY"

SPAWAR

CubeSat DMD Imager Design

Key benefits with respect to current state-of-the-art (CCD/CMOS-based)

- Simpler, low SWaP-C optical design
- High spectral and spatial resolution possible
- A single PMT (or APD) detector with higher sensitivity, dynamic range (up to 2 orders higher), and SNR
- Interpixel non-uniformity errors, striping are avoided
- Front-end filtering to reduce redundant data loading with same SNR
- DMD dither pattern can be adapted in real time to optimize spatialspectral resolution for a given scene
- DMD filtering can be used to mitigate blooming/saturation effects for bright land and cloud features adjacent to dark water
- Far less data volume transmitted with near-lossless compression

CubeSat DMD Imager – specs for Navy project

- Minimum SNR of 300 across all bands
- 350 to 900 nm spectral range, up to 1600 bands
- 20 m GSD over 50 km swath at 450 km altitude
- Equatorial orbit planned with ~90 min revisit
- Compressive sensing to optimize information content while achieving SNR

Mission/Payload Sensor

<u>FY19</u>: 854 x 480 pixel DMD 6.2 x 5.8 x 3.6 cm³

<u>FY20</u>: 2560 x 1600 pixel DMD

SPAWAR Systems Center Pacific Launch Program

- Phase A simulation and testing
 - Thermal vacuum, vibration, radiation, etc
 - Power budgets
- Material and hardware durability/reliability assessment
- Integration design with 6U bus
- Simulate and test data downlink
 - ~1 Mbps over ~5 min/orbit
 - - Developing optical comm downlink with 120 Mbps capability
 - Also developing optical comms in space for real-time downlink from anywhere in orbit

FLORIDA ATLANTIC UNIVERSITY"

DOD 6U Bus

Pumpkin

30 cm

High Altitude Platforms (HAPs): winged

Airbus Home > Defence > UAV > Zephyr

Zephyr (Airbus) Pioneering the Stratosphere

FLORIDA ATLANTIC UNIVERSITY

Consiglio Nazionale delle Ricerche

Phasa-35

(BAE Systems)

HIGH-ALTITUDE PLATFORM (HAP)

Model AlphaLink X

Number of Aircraft: 10 Total Wingspan: 215 m Payload Capacity: 450 kg Operational Latitude: 40° N/S Continuous Operation: 365 Days

AlphaLink X is powered by solar energy and allows flexible mission rescheduling and maintenance work during flight.

Dr. Daniel Cracau

Operating at altitudes of 20 to 30 km

High-aspect-ratio wing with increased payload capacity

High Altitude Platforms: balloons

ome > Drones & Robotics > HALE-D High Altitude Airship Crashed in Ohio

Drones & Robotics North America

HALE-D High Altitude Airship Crashed in Ohio

By Tamir Eshel - Jul 29, 2011

LTE Airnode (Airbus)

Raven (Aerostar)

High Altitude Long Endurance Demonstrator (HALE-D) (Lockheed Martin)

• 3578

European missions for Aquatic Earth Observation a new observation class on the horizon?

HARBOR BRANCH

FLORIDA ATLANTIC UNIVERSITY

Consiglio Nazionale delle Ricerche

Summary

- Currently developing hyperspectral DMD imager
 - 854 x 480 DMD increased to 2560 x 1600 in FY20
 - Phase B CubeSat deployment in equatorial orbit, FY21
- Flight operations testing at SSC-Pacific
- Navy support for bioluminescence and thermal imagers pending
- Phase A testing on HALE platforms with SSC-Pacific
- Working on contributing a DMD imager for EU Open Cosmos CubeSat for ESA
- Postdoc opportunities

Compressive Sensing Algorithms

- <u>Compressive Line Sensing (CLS)</u>: highly resource efficient technique
 - Inspired by active CLS imager prototype previously developed for Navy and Air Force
 - Senses each spatial-spectral "sheet" independently, jointly reconstructing a set of "sheets" for data cube
 - Imaging = encoding/decoding

nental setup of

ugh bubble screen

ional Oceanographic

Partnership Program

DMD codebook applied adaptively, "on-the-fly"

Underwater imaging through bubble screen

b. Raw imagarbor BRANGEH

FLORIDA ATLANTIC UNIVERSITY"

SPAWAR

Systems Cent PACIFIC

Consiglio Nazionale delle Ricerche

Science Products – Ocean Properties

 Fundamental optical properties of water absorption Imaging, backscattering visibility, **Biogeochemical properties Electro-Optical** \bullet • Suspended Particulate Matter (SPM) ID applications Chromophoric DOM Chlorophyll Algal pigment composition Ecosystem Particulate organic carbon (POC) monitoring, Primary productivity ocean health, Etc... hazard impacts

FLORIDA ATLANTIC UNIVERSITY"

Development of bioluminescence and thermal imagers in review at Navy, FY19-20

- For persistent surveillance
- Same DMD front end optical filtering technique
 - For **bioluminescence**, full 2D scene imaged onto DMD at 490 nm
 - For thermal, full 2D scene imaged onto DMD at MWIR
 - Sparse background monitoring switches to intensive monitoring protocol with object detection
 - Testing proposed from geostationary orbit on CubeSats (~2 m GSD) and HAPS drones (~40 cm GSD)

FLORIDA ATLANTIC UNIVERSITY"

