Ocean Colour Remote Sensing in Polar Seas

Atsushi MATSUOKA (Takuvik Joint International Laboratory)

9-12 April, 2019 IOCS Busan

Acknowledgements

 This research is supported by EC NUNATARYUK project (Horizon 2020), Centre Nationale d'Étude Scientifique (CNES), European Space Agency (ESA), Japan Aeronautic Expoloration Agency (JAXA), Centre Nationale Recherche Scientifique (CNRS)/ Université Piérre et Marie Curie (UPMC), Agence Nationale de la Recherche (ANR), European Commission (EC), Natural Sciences and Engineering Research Council of Canada (NSERC), National Science Foundation (NSF), and National Aeronautics of Space Agency (NASA). I thank K. Arrigo and J. Comiso for providing the latest PP estimates and sea ice trend, respectively.

Today's talk

- **1. Why are studies in polar seas so important?**
 - -Aspect of global CO₂ budget
- 2. Ocean colour remote sensing in polar seas
 - -Evaluating existing atmospheric correction algorithms
 - -Uniqueness of in-water optical properties

3. Applications

- -Examining trends in fluxes of terrigenous organic carbon
- -Discriminating water sources from space
- -Toward constraining numerical modeling
- -Multi-satellite remote sensing

1. Why are studies in polar seas so important?

Role of Arctic Ocean: Solubility pump

Volume: 1 % of global ocean CO₂ uptake: 5 – 14% of global ocean [Bates et al., 2011, Oceanography] GREENLAND

Role of Arctic Ocean: Solubility pump

CO₂ uptake: 5 – 14% of global ocean [*Bates et al.*, 2011, Oceanography]

1 % of global ocean

Volume:

http://www.nasa.gov/topics/earth/features/2012-seaicemin.html

Median extent

Role of Antarctic Ocean: Solubility pump

Sea

Sea Ice Concentration (percent)

50

Amundsen

Wedde

100

ce

she

Ross Sea

Volume: 5 % of global ocean Bellingshauser CO_2 uptake: 25 % of global ocean [Takahashi et al., 2002, DSRII]

Median extent

Role of Antarctic Ocean: Solubility pump

Contributions of polar seas to global CO₂ flux

Contribution	Arctic	Antarctic
Solubility pump	5-14 % ¹	25 % ^{2,3}
Biological pump	1-2 % ^{4,5,6,7}	3 % ³

¹Bates et al. (2011, Oceanography); ²Takahashi et al. (2002, DSRII); ³Arrigo et al. (2008, JGR);
 ⁴Bélanger et al. (2013, BG); ⁵Arrigo and van Dijken (2015, PO); ⁶Behrenfeld et al. (2006, Nature);
 ⁷Westberry et al. (2008, GBC)

Contributions of polar seas to global CO₂ flux

Contribution	Arctic	Antarctic
Solubility pump	5-14 % ¹	25 % ^{2,3}
Biological pump	1-2 % ^{4,5,6,7}	3 % ³
Terrestrial effect	\bigcirc	-
(CO ₂ release to the atmosphere)		

¹Bates et al. (2011, Oceanography); ²Takahashi et al. (2002, DSRII); ³Arrigo et al. (2008, JGR);
 ⁴Bélanger et al. (2013, BG); ⁵Arrigo and van Dijken (2015, PO); ⁶Behrenfeld et al. (2006, Nature);
 ⁷Westberry et al. (2008, GBC)

Terrestrial effects

- ✓ Widespread permafrost containing an enormous amount of organic carbon, 1700 Pg C: > 50 % of global carbon stock, double the atmosphere
- ✓ Increase in river discharge in both Eurasian and North American Arctic regions since late 20 century

Will the Arctic Ocean be source or sink of atmospheric CO_2 ?

IPCC (2013)

IPCC (2007)

2. Ocean colour remote remote sensing in polar seas

Is ocean color useful for polar seas?

Limitations

- Frequent cloud cover
- High solar zenith angles
- Possible signal contamination by sea ice pack
- Unique optical properties

Usefulness (several overpasses per day)

- Environmental monitoring (e.g., export of permafrost-origin organic matter in coastal waters)
- Ecosystem studies

Risk assessment

IOCCG report (2015)

Is ocean color useful for polar seas?

Limitations

- Frequent cloud cover
- High solar zenith angles
- Possible signal contamination by sea ice pack
- Unique optical properties

Usefulness (several overpasses per day)

- Environmental monitoring (e.g., export of permafrost-origin organic matter in coastal waters)
- Ecosystem studies

Risk assessment

IOCCG report (2015)

 2. Ocean colour remote remote sensing in polar seas:
 -Evaluating existing atmospheric correction algorithms-

3D radiative transfer model simulation using Monte Carlo method

Evaluating atmospheric correction algorithms

Basic

- Atmosphere-ocean coupled 3-D RT model based on Monte-Carlo method, 3DMCPOL (*Cornet et al.*, 2010, JQSRT) was used.
- \checkmark Ocean component is based on 6S RT.
- ✓ The number of photons used per pixel was 3.0 x 10⁵ for 51x51 pixels in order to have an uncertainty of $\rho_{TOA}(\lambda)$ less than 1 %.

Setting

- \checkmark Solar zenith was set to be 50° (a typical value for polar regions) but θ_v and $\Delta\phi$ varied.
- \checkmark OPAC aerosol models with 50 % humidity were used.
- ✓ Bidirectionality for fresh snow (Kokhanovsky and Bréon, 2012, IEEE) was taken into account.

Top View

Evaluating atmospheric correction algorithms

Example ($\theta_s = 50^\circ$, $\theta_v = 30^\circ$, $\Delta \varphi = 0^\circ$)

True : Known (simulation)

Red : POLYMER algorithm

[*Steinmetz et al.,* 2011, OE]

Black : NASA standard algorithm [*Bailey et al.,* 2010, OE]

[Matsuoka et al., in prep.]

2. Ocean Colour in polar seas

3. Applications

Bidirectionality of normalized $\rho_{TOA}(\lambda)$

$$\rho^{nor}(\theta_{v},\Delta\varphi) = \frac{\rho_{near-ice}^{TOA}(\theta_{v},\Delta\varphi)}{\rho_{ocean}^{TOA}(\theta_{v},\Delta\varphi)}$$

[Matsuoka et al., in prep.]

(n x n pixels)

Application of atmospheric correction algorithms to Aqua/MODIS satellite image

Application of atmospheric correction algorithms to Aqua/MODIS satellite image

Direct comparison between *in situ* and satellite estimates within 3 hours (i.e., NASA protocols) NASA standard

[Matsuoka et al., in prep.]

Direct comparison between in situ and satellite estimates within 3 hours (i.e., NASA protocols)

[Matsuoka et al., in prep.]

2. Ocean colour remote remote sensing in polar seas: In-water optical properties 1. Why polar seas?

2. Ocean Colour in polar seas

3. Applications

Optical dataset Antarctic Arctic 180° 0° See al 0 0 000 .06 06 °06 90° 0 0 0 **G**SS 0 B 0° 180° [Reynolds, Matsuoka et al., in IOCCG2015]

Estimates of chlorophyll *a* concentration: Deviations from the global relationship

[*Reynolds, Matsuoka et al.,* in IOCCG2015]

Estimates of chlorophyll *a* concentration: Deviations from the global relationship

2. Ocean Colour in polar seas

3. Applications

Absorption

Backscattering

[*Reynolds, Matsuoka et al.,* in IOCCG2015]

2. Ocean Colour in polar seas

3. Applications

Backscattering

1. Why polar seas?

2. Ocean Colour in polar seas

3. Applications

Compilation of available optical datasets

3. Applications (1/3)

Terrestrial effects

DOC and POC algorithms

- DOC concentration (Matsuoka et al., 2017, RSE)
- **Uncertainty:** ±28 %

- Semi-analytical algorithm
- Applicable for river-influenced coastal areas of the Artic Ocean
- **SPM/POC** concentration (After *Doxaran et al.*, 2015, BG) Uncertainty: ±35 %
- Empirical algorithm
- Designed for Southern Beaufort sea but can be tuned for other Arctic coastal areas

135°W

130°W

Monthly DOC concentrations (MODIS)

Monthly POC concentrations (MODIS)

(g m⁻³)

Monthly POC concentrations (MODIS)

(g m⁻³)

<--- 3.1. Trends in organic matter fluxes 3.2. Discriminating water sources

3.3. Numerical modelling

Example of the Mackenzie river plume using a high resolution satellite image (30m)

Two-decade trends in DOC and POC fluxes for summer total (1998-2018)

[*Matsuoka et al.,* to be submitted]

Comparison of satellite DOC flux in the delta with *in situ* data <u>at an upstream pilot station</u> (*Tank et al.*, 2016, ERL)

[Matsuoka et al., to be submitted]

Two-decade trends in DOC and POC fluxes for **September only** (1998-2018)

Trends in standardized environmental variables: ➤ Standardized anomalies for 11-year moving averaged data

River Discharge

Air Temperature

Active Layer Depth

Precipitation

3. Applications (2/3)

3.2. Discriminating water sources

Multi-satellite remote sensing approach

- Ocean color
- Sea surface salinity
- Sea ice concentration
- Sea surface temperature
- Sea surface wind

Mass balance equations regarding salinity^{sat} and CDOM^{sat}

Relationship between salinity^{sat} and CDOM^{sat} CDOM^{sat} (m⁻¹) **Salinity**^{sat} 0.8 72°N 72°N 24 0.6 16 0.4 70'N 70'N 0.2 2012-07 2012-07 0.0 68°N 68°N

Fraction of river-influenced water derived from space

Mean river fraction

Error

3. Applications (3/3)

Comparison of satellite estimates with modeling results : MITgcm coupled with biogeochemical components

Model/Satellite

Model

Comparison of satellite estimates with modeling results : MITgcm coupled with biogeochemical components

Field observation plan

WHEN: April-June-July-August 2019 WHERE: Delta Mackenzie river HOW: Helicopter/Ship WHAT VARIABLES/EXPERIMENTS:

Concentration and ages of organic matter, Terrestrial organic matter tracer, Phytoplankton pigments, nutrients, Biodegradation experiments

Optical properties

Radiance/Irradiance, light absorption of OM, Light backscatter of particles, Particle size distribution, Fluorescence of OM, etc.

Mon. Plan					
	lce covered	Apr	Helicopter but ice-camp type operation		
	Break-up	Jun	Helicopter stationary operation		
	n water	Jul- Aug	Ship-base operation	The difference formation	
	Oper	Aug- Sep	Ship-base operation	Received and and a second and	

Field observation plan

Points to be considered

- ✓ Avoiding sampling stations in the Stamukhi area (April, June)
- ✓ Avoiding sampling stations in bottom-fast ice area (April, June)
- ✓ Capturing extension of the river plume
- ✓ Focusing on biogeochemical variables at low salinity (mostly 0-3)
- ✓ Bathymetry
- ✓ Tidal effect
- Comparison of results with the literature

Copernicus Sentinel-1A/1B, Radarsat-2

https://en.wikipedia.org/wiki/Stamukha

<--- 3.1. Trends in organic matter fluxes

3.2. Discriminating water sources

3.3. Multi-remote sensing

3.2. Discriminating water sources

3.3. Multi-remote sensing

False color Image of L8/OLI

3.2. Discriminating water sources

3.3. Multi-remote sensing

False color Image of L8/OLI

<--- 3.1. Trends in organic matter fluxes

3.2. Discriminating water sources

3.3. Multi-remote sensing

False color Image of L8/OLI

3.2. Discriminating water sources

3.3. Multi-remote sensing

Single band S1 SAR image (HH)

<--- 3.1. Trends in organic matter fluxes

3.2. Discriminating water sources

3.3. Multi-remote sensing

Single band S1 SAR image (HH) L8/OLI false color

3.2. Discriminating water sources

3.3. Multi-remote sensing

S1 SAR RGB image: HV (red), HH (green), HH (blue)

Concluding remarks (1/2)

- 1. Characteristics of optical properties for Arctic (higher CDOM proportion relative to a_{tw}) and Antarctic (high package effect) were shown. These mainly explain deviations from the global relationship of chl *a* estimate, etc.
- 2. The performance of POLYMER algorithm likely performs better in icy waters than that of NASA standard AC algorithm.
- 3. While no trend in DOC flux was observed, POC flux in September significantly increased over the last two decades (1998-2018).
- 4. An increase in air temperature is likely deepening active layer depth. This might induce hydrological connection in recent years.

Concluding remarks (2/2)

- 5. Source water discrimination will be useful to examine the impact of riverine inputs on coastal marine ecosystems.
- 6. While comparison of DOC/POC flux between satellite and a numerical model shows promising results, the discrepancy needs to be further minimized by in situ data.
- 7. Multi-remote sensing approach is required to better understand physical and biogeochemical processes of the ocean.

Multi-satellite remote sepsing

Ocean color sensors

Sentinel-2A,2B/MSI, Landsat-8/OL Sentinel-3A,3B/OLCI, GCOM-C/SGLI, Aqua/MODIS, Suomi-VIIRS, NOAA-20/VIIRS

Lidar

CALIPSO/CALIOP

Active microwave (SAR)

Sentinel-1A,1B, Radarsat-2

Passive microwave SMOS/MIRAS, GCOM-W/AMSR-2