

OCEAN COLOUR ACTIVITIES IN INDIA

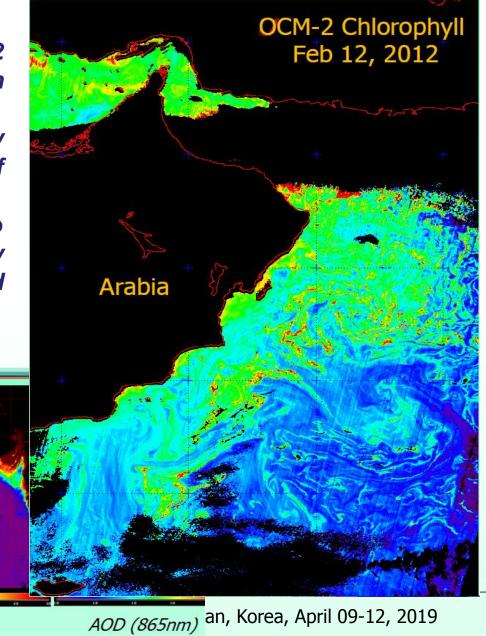
Sediments outflow to Sea during Monsoon OCEANSAT-2 OCM August 21, 2018 Krishna River Mouth, Bay of Bengal

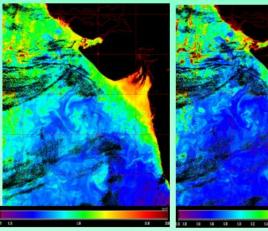
Prakash Chauhan

Indian Institute of Remote Sensing, Indian Space Research Organisation Dehradun-248001, INDIA

IOCS-2017 meeting at Busan, Korea, April 09-12, 2019

iirs


Update on Ocean Colour Activities in India


- Continuity of operations of OCEANSAT-2 OCM sensor
- Phytoplankton Bloom studies in the Arabian Sea
- Phytoplankton size estimation in the Arabian Sea using OCM data
- AVIRIS-NG Airborne Hyperspectral data for Coastal / Inland waters
- High Resolution Remote Sensing for Water Quality studies
- Update on Oceansat-3 satellite
- Mobile App for water turbidity estimation Citizen science approach
- Ocean's Colour from Space : Images from OCEANSAT OCM
- Capacity Building for Ocean Colour in India

Biological Oceanography

- •ISRO has launched OCESNSAT-2 Ocean Colour Monitor (OCM) sensor in 2009
- OCM-2 is continue to provide quality data even in 2019 after ten years of operations
- OCM data is operationally used to asses marine living resources, primary productivity, algal bloom detection and bio-physical coupling studies

Chlorophyll-a

K_d (490 nm)

TSM

M

Natura Colour Composite Animation - Jan 2017

Turbidity shades around

Gujarat coast

Indus Delta

> Turbid waters GOK

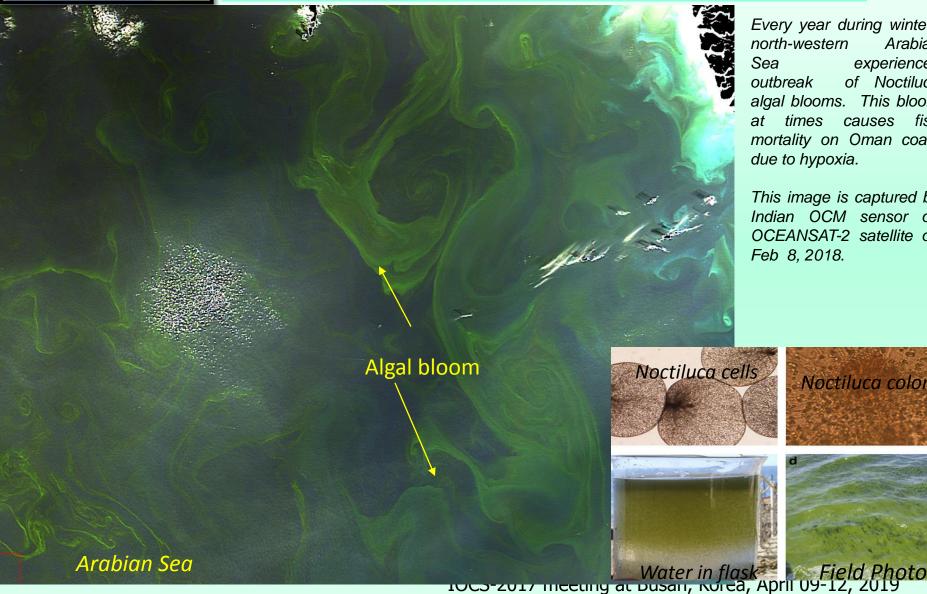
> > Muddy Brown water of Gulf of Khambhat

Coastal Green

Land and Ocean Colour around

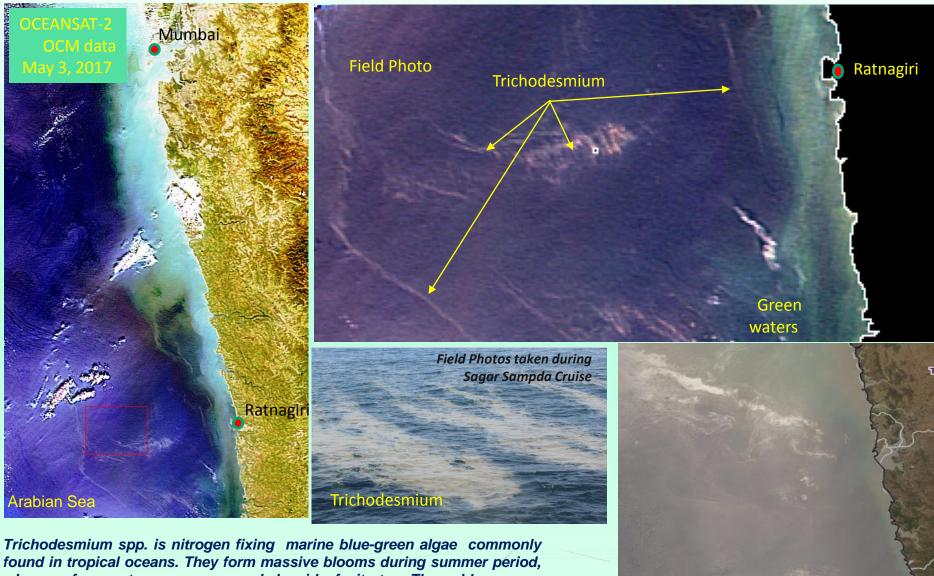
OCM sensor

23 January 2017


Gujarat as captured by OCEANSAT-2

Blue Oceanic waters of Arabian Sea

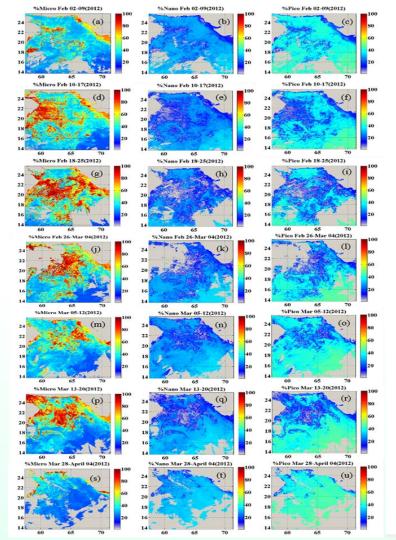
Forest of the Sea : Massive Outbreak of Noctiluca algal blooms in the Arabian Sea as captured by Indian OCEANSAT-2 OCM on Feb 8, 2018



Every year during winters north-western Arabian Sea experiences outbreak of Noctiluca algal blooms. This bloom at times causes fish mortality on Oman coast due to hypoxia.

This image is captured by Indian OCM sensor on OCEANSAT-2 satellite on Feb 8, 2018.

Noctiluca colony


Trichodesmium Bloom detection using OCEANSAT-2 OCM data on May 3, 2017 Off Ratnagiri coast, Maharashtra, India

found in tropical oceans. They form massive blooms during summer period, when surface waters are warm and devoid of nitrate. These blooms are important for nitrogen bio-geo-chemistry of oceans. IOCS-2017 meeting a May 11, 2017

Phytoplankton Size Class retrieved from Ocean Colour Data

Microplankton in red colour dominates high algal bloom regions whereas blue colour are pico planktons representing non bloom area.

Remote Sensing of Environment

Remote Sensing of Environment 198 (2017) 286-296

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/rse

Dcean color satellite determinations of phytoplankton size class in the Arabian Sea during the winter monsoon

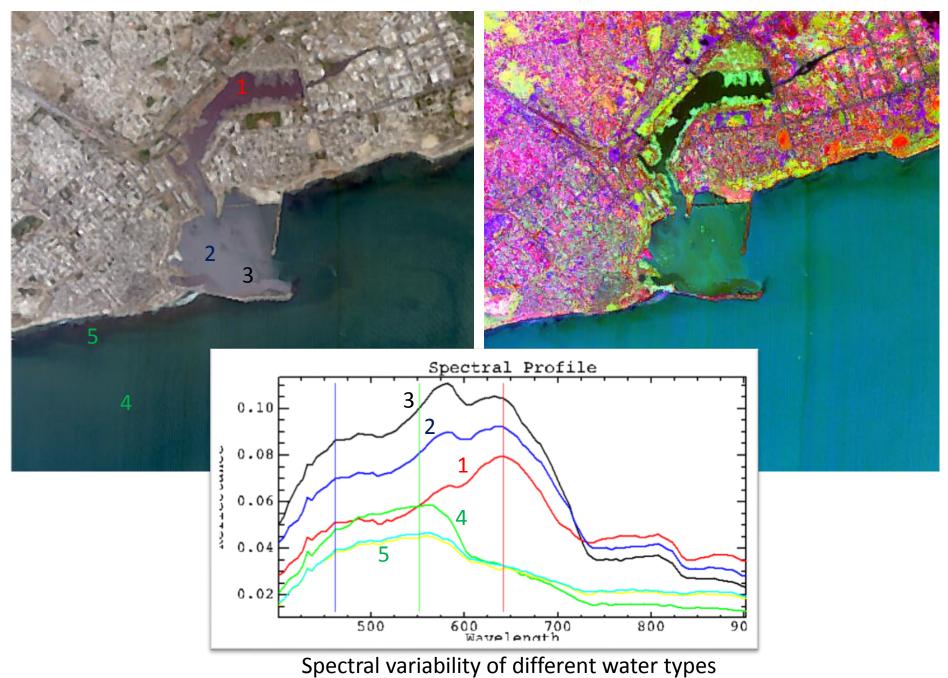
ABSTRACT

Arvind Sahay^{a,*}, Syed Moosa Ali^a, Anurag Gupta^a, Joaquim I. Goes^b

^a Space Applications Centre (ISRO), Ahmedabad 380015, India
^b Lamont Doherty Earth Observatory at Columbia University, Palisades, New York 10964, USA

ARTICLE INFO

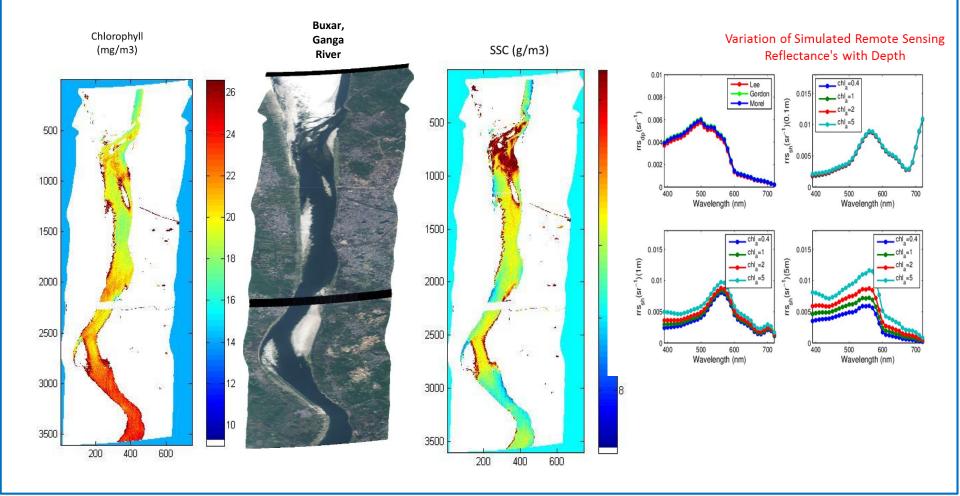
Article history: Received 4 September 2016 Received in revised form 6 June 2017 Accepted 8 June 2017 Available online xxxx


Keywords: Phytoplankton size class Chlorophyll-a Arabian Sea OCM-2 MODIS Noctiluca

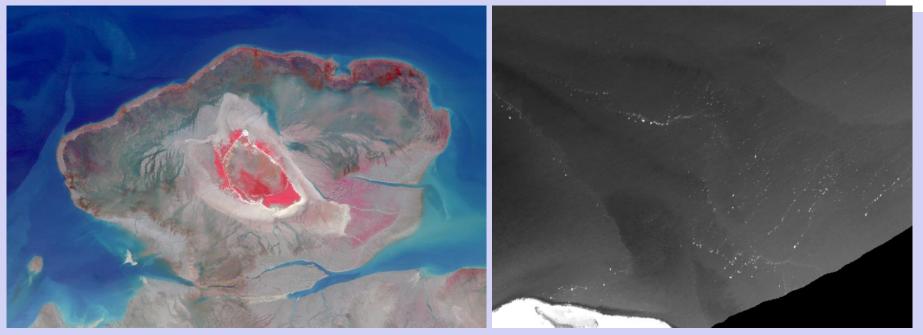
A regionally tuned three component "abundance" model of Brewin et al. (2012) has been used to discriminate satellite ocean color derived fields of phytoplankton biomass observable as Chlorophyll-a (Chl-a), into three size classes, i.e. microplankton (>20 µm), nanoplankton (>2 to <20 µm) and picoplankton (<2 µm). The model has been applied to MODIS-Aqua and Oceansat-2, Ocean Color Monitor (OCM) derived fields of Chl-a data between Nov. and Mar. In the Arabian Sea, during the evolution of blooms of the large (>800 µm sized) green mixotrophic dinoflagellate *Noctiluca scintillans*. A comparison of shipboard measured and model derived values of phytoplankton size classes (PSCs) show the superiority of the regionally tuned model over parameterizations used in the original model of Brewin et al. (2012). A total number of 39 in situ data points have been used for the tuning of the regional model and 5 different in-situ data points have been used for the comparison of data paucity. The absolute mean and the maximum absolute errors for all size fractions are 4.7% and 17.2% respectively, as compared to the values of 9.6% and 26% respectively obtained using Brewin et al. (2012). When applied to a weekly time series of Chl-a images, the regionally tuned model is able to capture the seasonal cycle of PSC in the Arabian Sea associated with the tail end of the fall inter-monsoon

Figure-Time series of weekly composite images of phytoplankton size class in the Arabian Sea obtained by applying regionally tuned model to MODIS Aqua Chl-a

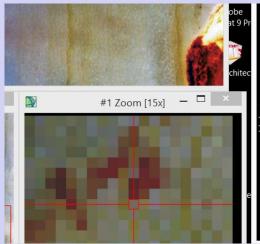
from 2nd Feb 2012 to 4th Apr 2012. The maps capture the variability pretty well in different seasons

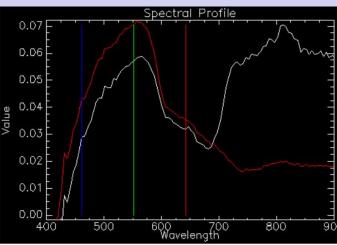

AVIRIS-NG data over Veraval Fishing Harbour in Gujarat

River Water Quality using AVIRIS Data over Ganga River, Buxar

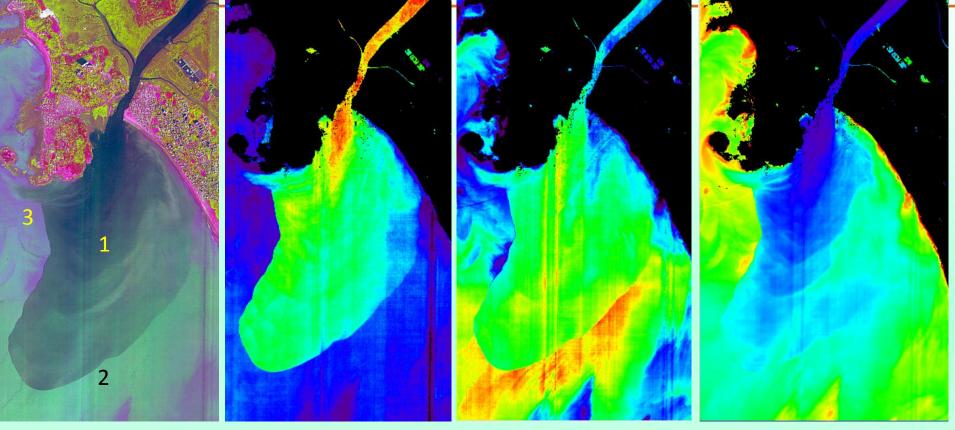

Achievements

- Forward simulations were carried out to generate the synthetic database of remote sensing reflectance (r_{rs}) for all possible combinations of water quality parameters.
- Different type of bio-optical model were included in the simulations that take care of absorption and scattering properties of the water constituents along with the bottom substrate/depth.
- Semi analytical model was implemented for simultaneous retrieval of the water quality parameter and depth, from r_{rs} without taking any ground/prior information.
- Water quality maps were generated using AVIRIS dataset over Ganga River Buxar.




Sargassum Habitat over Pirotan Reef : AVIRIS NG data

Macroalgae Habitat around Pirotan


Floating Sargassum in the Gulf of Kachchh

Potential of CARTO-2S data for Coastal Pollution dumps and Point Source discharge in Mumbai region

CARTO-2D PCA

Coloured Organic Matter

Chlorophyll-a

Inorganic Sediment

Optically active in-water constituents off Mumbai coast using CARTO-2S

TURBIDITY-METER MOBILE APP

Gray Card

Sky

Water

Principle: Mobile Phone camera is used by the user to measure

- how much light is emanating from the water surface (water image),
- correct that value for sun glint off the surface (sky image), and

Oceansat-3 Spacecraft

Payloads	:	OCM-3, Scat-3, SSTM-1 and Argos -4	
Spacecraft Class	:	Standard I-1K bus	
Mission Life	:	5 years	
Spacecraft Mass	:	~1200 kg (Mainframe: 800 kg, P/L : 400 kg)	
Power Generation	:	2414 W @ BOL; 2100 W @ EOL (with 1 S/F)	
Spacecraft Load	:	450 W for Mainframe; 950 W for Payloads	
Orbit type	:	Sun Synchronous Orbit (SSO)	
Altitude	:	720 km or 735 km in case of marching orbit	
Inclination	:	98.28 ⁰	
No. of orbits per day	:	$14 + \frac{1}{2}$	
Local time	:	12:00 Noon at descending node	

Mission Specifications

Oceansat-3 OCM & SSTM Instrument

इसरो ंडल्व		OCM-	Mech Struc		
Band No.	Centra	al Wavelength	Application	** •*	
B1	412 nm		Differentiate yellow substance from chlorophyll		
B2	443 nm	1	Chlorophyll absorption maximum; low chlorophyll	-	
B3	490 nm		Moderate chlorophyll	Tilt mechanism	
B4	510 nm	1	High chlorophyll; Total Suspended Matter (TSM)	(A-Brackets)	
B5	555 nm	1	Weak chlorophyll absorption	DHA Thermal cover- DHA	
B6	566 nm	1	Phycoerythrobilins (PEB)	anical	
B7	620 nm	1	Turbidity in coastal Case 2 waters		
B8	670 nm	1	Baseline for chlorophyll fluorescence		
B9	681 nm		Chlorophyll fluorescence for high concentration		
B10	710 nm		Baseline for chlorophyll fluorescence; extrapolation to visible bands for atmospheric Correction		
B11	780 nm		Atmospheric correction; avoids O2 absorption Band	Hood Thermal cover- LA	
B12	870 nm		Atmospheric correction; good assessment of spectral scattering	Electronics Blackbody Scan Mechanism	
B13	1010 nr	n	Atmospheric correction, aerosol – white foam discrimination		
B1	11 µm	Sea surface ter	mperature detection SSTM bands	DHA/IDDCA	
B2	12 μ m	Sea Surface Ter	emperature detection <i>Launch in early</i>	Mechanical Structure	
10 IOCS 2017 meeting at Rusan Karoa April 00 12 2010					

OCM Coffee Table Book

Ocean's Colour From Space

Images from Oceansat OCM sensor

iirs

Available at IOCCG web site

http://ioccg.org/wp-content/uploads/2016/02/ocm-ocean-colour-atlas-

IOCS-2017 meeting at Busan, Korea, Apri 2091 82 pzt 19

Workshop cum training programme on "Coastal & Ocean Managem January 29 - February 1, 2019 at IIRS Dehradun

- The workshop was designed for professionals and specialists from university, educational institutes, operational & research institutes and research scholars in Marine Science, Earth Science, Oceanography, Fisheries, Environmental Science and related fields.
- The aim of the programme was to provide participants an understanding of the scientific concepts associated with coastal and marine ecosystems, coupled with a practical knowledge of marine system management.
- 31 participants including professors, post-doc fellows and research scholars from different parts of the country attended the training programme.

International Training Centre for Operational Oceanography (ITC Oceans), INCOIS, Hyderabad

- Course on "Marine Phytoplankton- Optics, pigment and taxonomy" during March 25-29, 2019
- Course on "Coastal Vulnerability due to sea level rise and Storm Surges" during April 22-26, 2019

Thank You