Minimum Requirements for Lab/Field Measurements for PFT Algorithm Evaluation

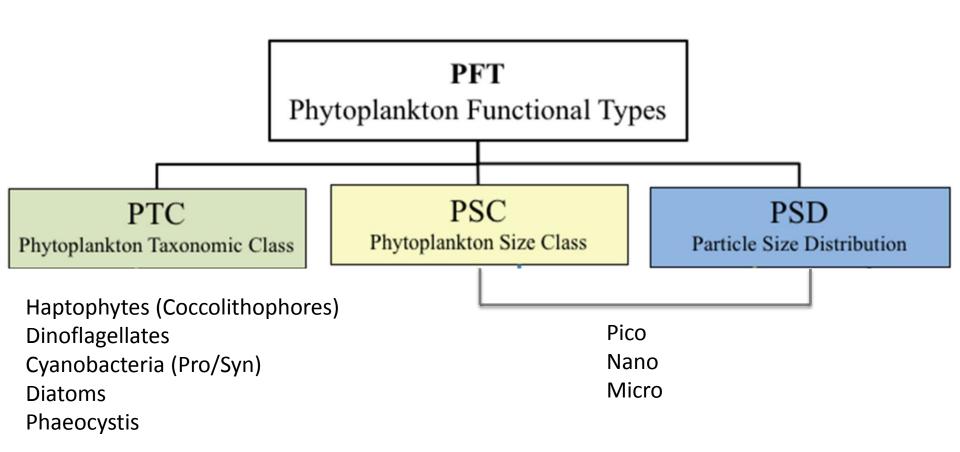
Colleen Mouw

University of Rhode Island Graduate School of Oceanography

cmouw@uri.edu

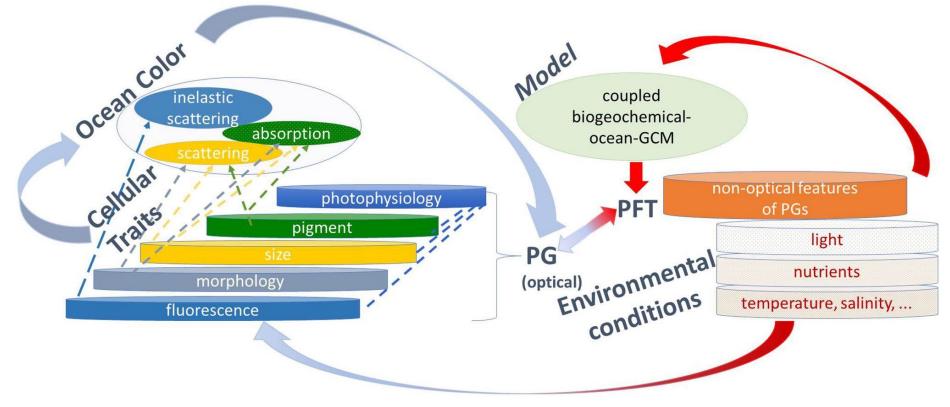
Photo credit: Chris Strait

Resources & Acknowledgements

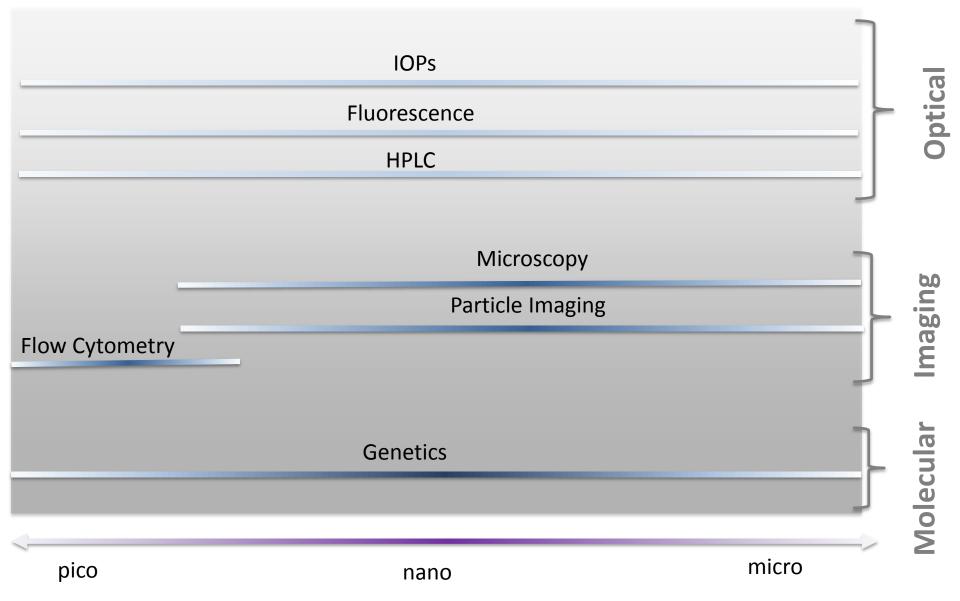

Bracher, A. H. Bouman, R. Brewin, A. Bricaud, V. Brotas, A. M. Ciotti, L. Clementson, E. Devred, A. DiCicco,
S. Dutkiewicz, N. Hardman-Mountford, A., J. Uitz (2017) A Consumer's Guide to Satellite RemHickmann,
M. Hieronymi, T. Hirata, S. Loza, C. B. Mouw, E. Organelli, D. Raitsos, S. Sathyendranath, J. Uitz, M. Vogt,
A. Wolanin (2017) Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future
<u>Development</u>. Frontiers in Marine Science, 4:55, doi: 10.3389/fmars.2017.00055.

Bracher, A., N. Hardman-Mountford, T. Hirata, S. Bernard, R. Brewin, A. Bricaud, V. Brotas, A. Chase, A. Ciotti, J.-K. Choi, L. Clementson, E. Devred, P. DiGiacomo, C. Dupouy, W. Kim, T. Kostadinov, E. Kwiatkowska, S. Lavender, T. Moisan, C. Mouw, S. Son, H. Sosik, J. Uitz, J. Werdell, G. Zheng (2015) <u>Phytoplankton Composition from Space: towards a validation strategy for satellite algorithms</u>, NASA-TM-2015-217528, 40 pp. Greenbelt, MD: NASA Goddard Space Flight Center. (http://www.ioccg.org/groups/PFT-TM_2015-217528_01-22-15.pdf)

Mouw, C.B., N. Hardman-Mountford, S. Alvain, A. Bracher, R. Brewin, A. Bricaud, A. Ciotti, E. Devred, A. Fujiwara, T. Hirata, T. Hirawake, T. Kostadinov, S. Roy, J. Uitz (2017) <u>A Consumer's Guide to Satellite</u> <u>Remote Sensing of Phytoplankton Groups in the Global Ocean</u>, Frontiers in Marine Science, 4:41, doi: 10.3389/fmars.2017.00041.


Sosik, H.M., S. Sathyendranath, J. Uitz, H. Bouman, A. Nair. Chapter 2. In situ Methods for Measuring Phytoplankton Functional Tyles. (2014) In, <u>Phytoplankton Functional Types from Space</u>. Sathyendranath, S. (Ed.), Reports of the International Ocean Color Coordinating Group, No. 15, IOCCG, Dartmouth, Canada. doi: 10.25607/OBP-106.

Satellite PFT Products


Motivation

- The majority of the existing PFT algorithms have been validated with HPLC pigment data.
- Despite its widely accepted use as an indicator of phytoplankton groups, the HPLC approach has not been well validated.
- Several other observation approaches are needed improve development and validation of satellite PFT algorithms.

Bracher et al. 2017

Range of Characterization & Level of Derivation from R_{rs}

Particle Imaging

Method	Advantages	Limitations	Relevance
Microscopy	 Only current method capable of identifying nearly all phytoplankton Capital investment in equipment is low (at least for light microscopy) Equipment maintenance is relatively straightforward 	 Time consuming Identification dependent on expert knowledge and subjective interpretation Experts in phytoplankton taxonomy are increasingly rare Assumptions required to convert to biovolume and biomass Enumeration of small cells (picoplankton) re- quires the use of epifluorescence microscopy and identification of small cells (picoplankton) to species level is difficult Sensitive to methods used to collect and concentrate cells and preservation techniques do not work equally well for all taxa 	 Assumptions required to link cell counts to estimates of pigment biomass Small sample sizes lead to large uncertainties in contribution of rare cells, which can be large contributors to biomass (due to large cell size) Cell counts have to be supplemented with cell size information to estimate phytoplankton size structure
Flow Cytometry	 Automatic and fast Picoplankton are readily observed Imaging in flow provides access to microplankton Potential for optically estimated cell size In situ tools available 	 Specialized instruments required to assess entire phytoplankton size range Identification is often possible only to the level of certain phytoplankton groups Instrumentation is expensive and delicate; requires expert user 	 Assumptions required to link cell counts to pigment biomass Cell abundance and cell size information can be converted to group-specific biovolume or carbon biomass IOCCG, 2014

Particle Imaging – Instrumentation Differences

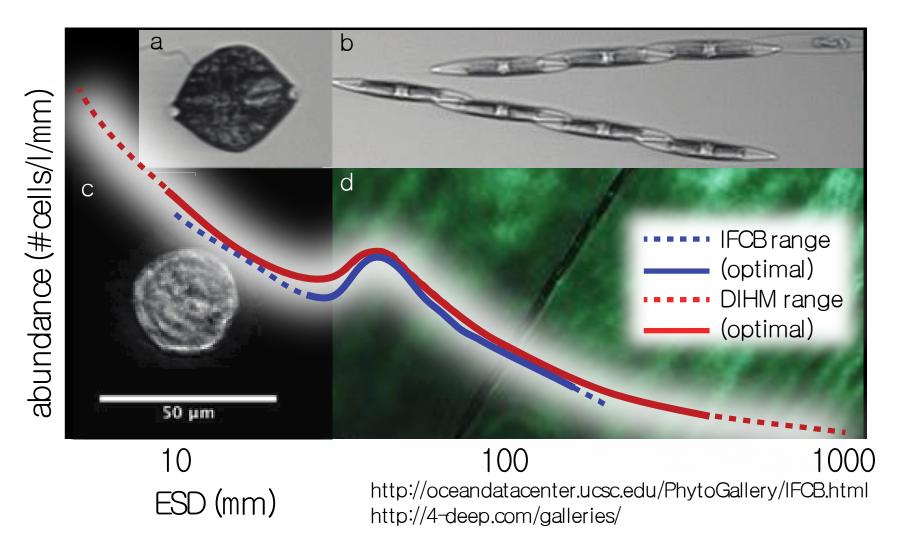


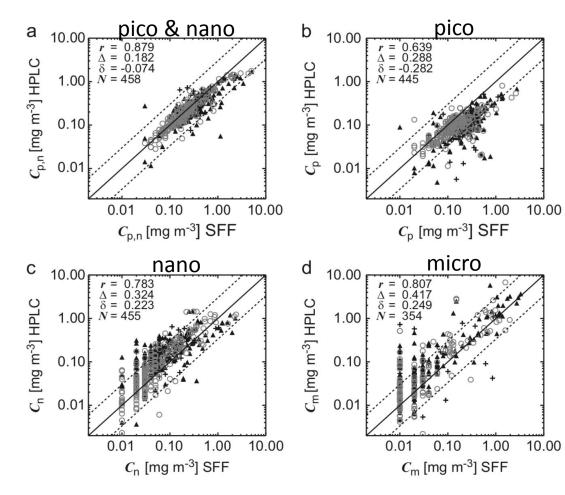
Figure: Courtesy of Melissa Omand

Optical

Method	Advantages	Limitations	Relevance
HPLC	 Automatic and precise Basis of chemotaxonomy 	 Few unambiguous marker pigments Sensitive to assumptions about pigment ratios Uncertainty caused by intra-group variability in pigment ratios (e.g., with growth conditions) Expensive Few experts and facilities, globally and comparison between laboratories confounded by differences in methodology (e.g., solvents, column materials) No in situ tools 	 Group-specific pigment biomass directly computed Used extensively for development and validation of algorithms
IOPs	 Most methods are relatively simple and inexpensive Many available tools, in situ and laboratory 	 Assumptions required to convert between optical properties and biomass Uncertainty in some methods caused by intraand inter-group variability in optical properties (e.g., due to growth condition, taxonomy, etc.) 	 Measurements directly linked to theoretical basis for remote sensing of phytoplankton
Successive Filtration	Relatively simple	 Cell breakage and filter clogging can lead to inaccuracies Practical constraints impose limits on the number of size classes that can be measured Time consuming No taxonomic information 	 Most direct assessment of size-based biomass IOCCG, 2014

Optical

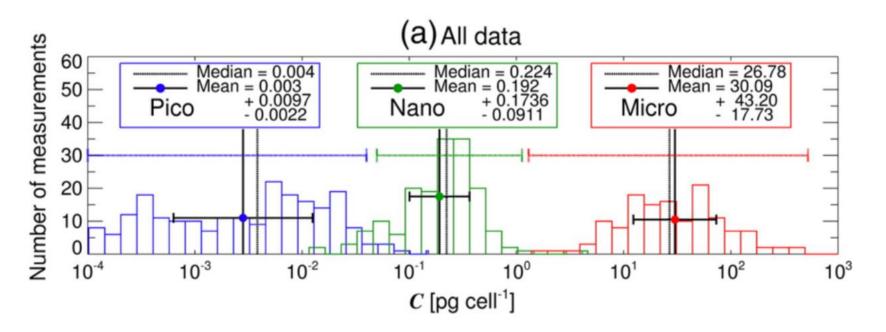
Method	Advantages	Limitations	Relevance
Fluorescence Ex/Em Spectra	 Simple and inexpensive method for extracted chlorophyll concentration In vivo excitation and emission spectra useful for some group-specific assessment Rapid and easy In situ tools available 	 Interpretation of <i>in vivo</i> fluorescence signal is complex and dependent on taxonomy and physiology Assumptions required to convert <i>in vivo</i> signals to biomass Uncertainty caused by intra-group variability in pigments and associated fluorescence 	 Basis of most total phytoplankton biomass assessments Used in active-passive remote sensing to detect phytoplankton types from laser-based remote sensing from aircraft Solar-induced chlorophyll fluorescence is amenable to remote sensing


-Omics

Method	Advantages	Limitations	Relevance
Molecular Methods	 Taxa can be targeted with high degree of specificity 	 Only a few probes currently available 	 Largely untested
	 Particular functions can be targeted directly 	 Method development and testing time consuming 	
	 In situ tools emerging 	 Relatively expensive and requires specialized equipment 	
		 Assumptions required to convert to biomass or size structure 	

Efforts to Compare Methods

Comparison of size fractionation and sized estimated with HPLC pigments


- HPLC data explained between 40 -88% of the variability in the size fractionated data.
- Significant biases between the methods:
 - HPLC overestimating nanoplankton chlorophyll and underestimating picoplankton chlorophyll compared with size fractionation.
- Uncertainty in both HPLC and size fractionation data makes it difficult to ascertain which is more reliable.

Brewin et al. 2014

Efforts to Compare Methods

Comparison of size-fractionated chlorophyll estimated using HPLC with cell counts from flow cytometry and microscopy

By dividing the size-fractionated chlorophyll concentrations by the cell counts in each size fraction, able to estimate a range of intracellular chlorophyll concentrations for the three size classes.

Recommendations

- No one method is entirely dependable Use of any one method along would results in an incomplete or partially unambiguous characterization of the phytoplankton community
- Incorporating various methodologies leads to more complete diagnosis of the community
- Need for coordinated efforts to compile and generate comprehensive *in situ* datasets (not just for HPLC) for assessing composition
- Provide best practice guidance to merge the different types of datasets (HPLC, microscopy, flow cytometry) into an integrated product that encompasses different ways of grouping phytoplankton.

Recommendations

Methods:

- Methods to **convert from** *in situ* **data to phytoplankton biomass or fractions** should be assessed and protocols for merging different datasets (e.g., HPLC, microscopy, ...) should be formulated.
- **Differences in particle imaging and identification technologies** (e.g., holography, flow cytometry, flow cam, etc.) need to be assessed.
- Coincident IOP data with phytoplankton group measures need to be curated.
- Develop **standardized protocols** for all phytoplankton group relevant measurements.

Datasets:

- Specific comprehensive datasets should be compiled that include coincident IOPs, AOPs, and phytoplankton composition that serve as a resource for PFT algorithm development, refinement, and validation, and improve the ability to inter-compare validation metrics.
- **Standardization** of data products, quality, nomenclature, and format among different databases should be assured to enable easy compilation and expansion.

Recommended Observations

Key observables to characterize phytoplankton communities:

- Phytoplankton pigments from HPLC, phycobilins from spectrofluorometry
- Phytoplankton cell counts and ID, volume/carbon estimation and imaging (e.g. from flow cytometry, FlowCam, FlowCytobot type technologies)
- Inherent optical properties
- Hyperspectral radiometry
- Particle size distribution
- Size-fractionated measurements of pigments and absorption
- Genetic/-omics data

Questions

- With many different definitions of PFT, which metrics best serve which questions?
- Is there any site or effort that has simultaneously observed all of the recommended types of data?
- Few of these methods can be directly compared. So, how do we compare? How do we know which method is truth?
- How can we integrate observation types?
- Which set of observations are most comprehensive and how can we ensure integrated methods capture the continuum of the whole phytoplankton community assemblage?