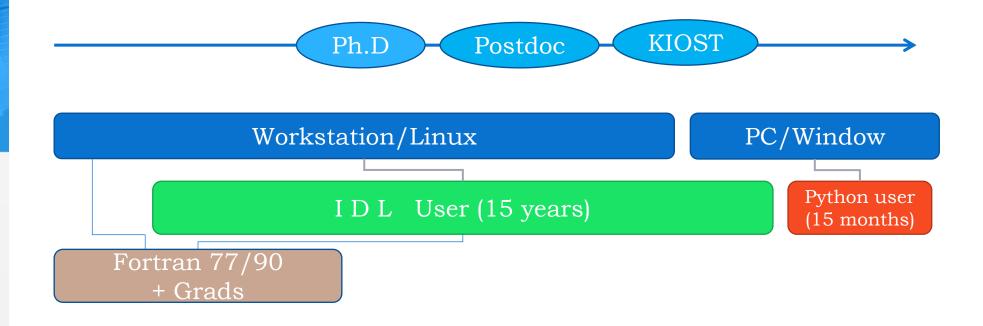
Python for multi-year GOCI ocean color products analysis: sharing the advantages and issues

Breakout I. Ocean source scientific computing tools and resources

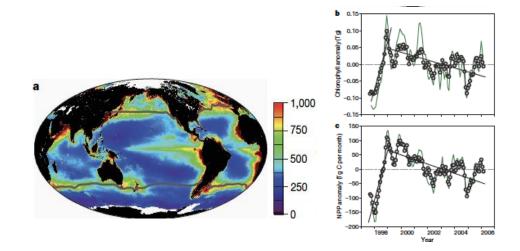
Myung-Sook Park and Seonju Lee

Korean Ocean Satellite Center(KOSC) Korea Institute of Ocean Science and Technology(KIOST)

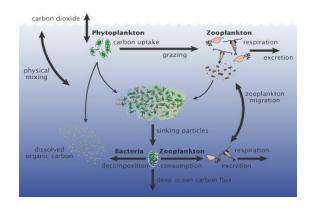

Collaboration with Jaehyun Ahn, Youngje Park, Wonkook Kim, and Sunju Lee

History of my scientific tools

I was major in atmospheric science (particularly, remote sensing and climate) and now currently working in ocean remote sensing in KOSC/KIOST.


- Only a short-time user of Python but highly satisfied with this tool.
- no longer use IDL

I will present how and why the community is using the tool.

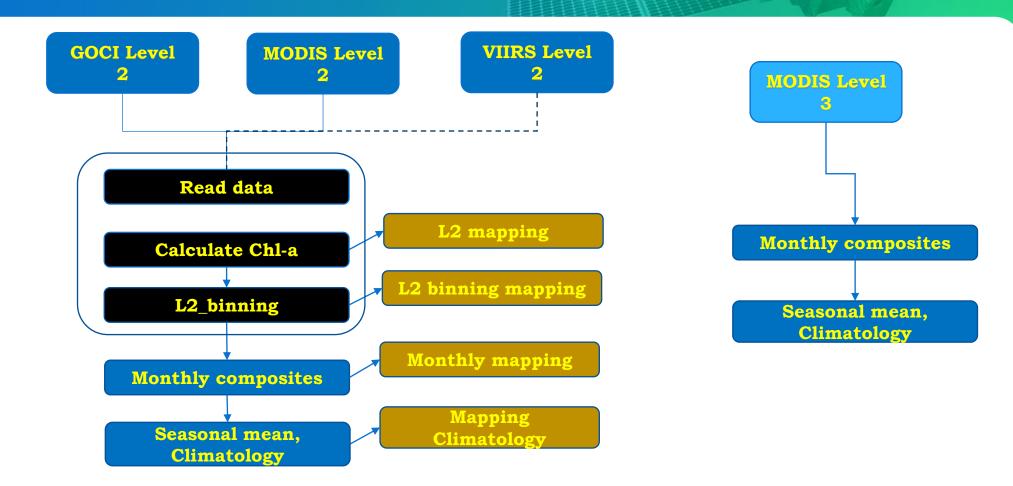


Establishing the dataset of multi-years ocean color record over global and regional seas is a fundamental for climate-ocean interaction.

Marine phytoplankton is tiny but ubiquitous over ocean surface of Earth

CO2 are fixed into organicmaterial by phytoplankton.-- organic carbon is transformedto marine ecosystem by sinkingand grazing

- The first ocean color sensor on a geostationary orbit, Geostationary Ocean Color Imager (GOCI) has been operated for more than eight years since 2010.
- The GOCI has a capability to examine hourly ocean color variability over seas between Korea, China, and Japan of which area is about 2500 km x 2500 km.
- Recently, the version 2 GOCI ocean color products with improved atmospheric correction method (Ahn et al. 2016) was newly released by Korean Ocean Satellite Center (KOSC).
- The validation of the primary ocean color product, GOCI Chrolopyll-a (Chl-a) concentration, has been persistently performed using *in situ* observation (Kim et al. 2016).
- It is time for next step <u>to perform GOCI and multi-satellite ocean color</u> products comparison to clarify GOCI's consistency with NASA heritage <u>ocean color satellites.</u>

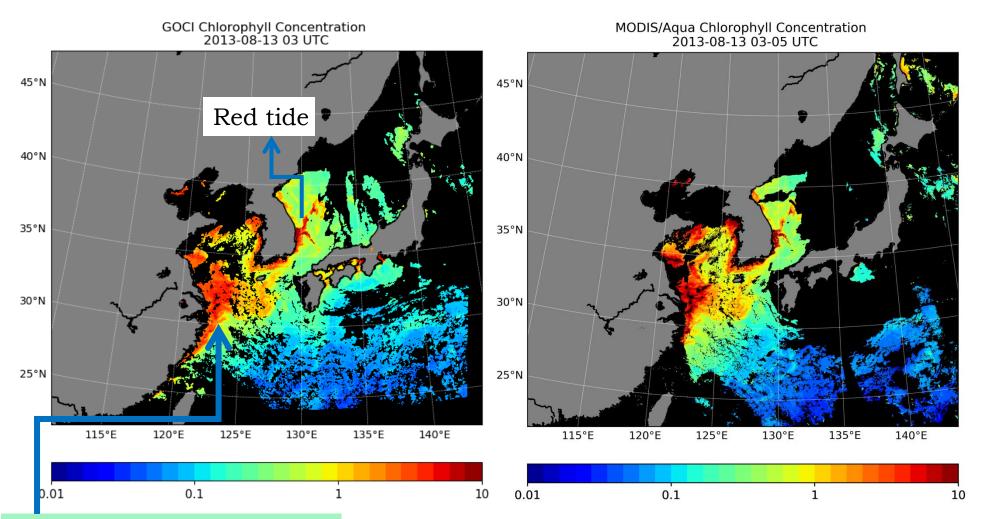

Research objectives

- The objectives of the preliminary study are to investigate the consistency of Chl-a products between GOCI and MODIS for the North-East Asian region, and to examine how to explain the differences between two satellite products.
- For preparation of multi-decadal records of GOCI and GOCI-II for their climate application, we need to conduct these kinds of multi-satellite consistency tests (GOCI vs. polar orbiting satellites, GOCI vs. GOCI-II).

"GOCI and OC satellite Inter-comparison system" -- Python 3.6

- Grid characteristics
 - Equal-angle binning (CZCS) --> Equal-area binning (2 km)
- Product temporal averages
 - <u>Un-weighted, arithmetic, averages of pigment concentration for all pixels containing valid data</u>

Guide to the Creation and Use of Ocean-Colour, Level-3, Binned Data Products, IOCCG Report Number 4, 2004, Edited by: David Antoine

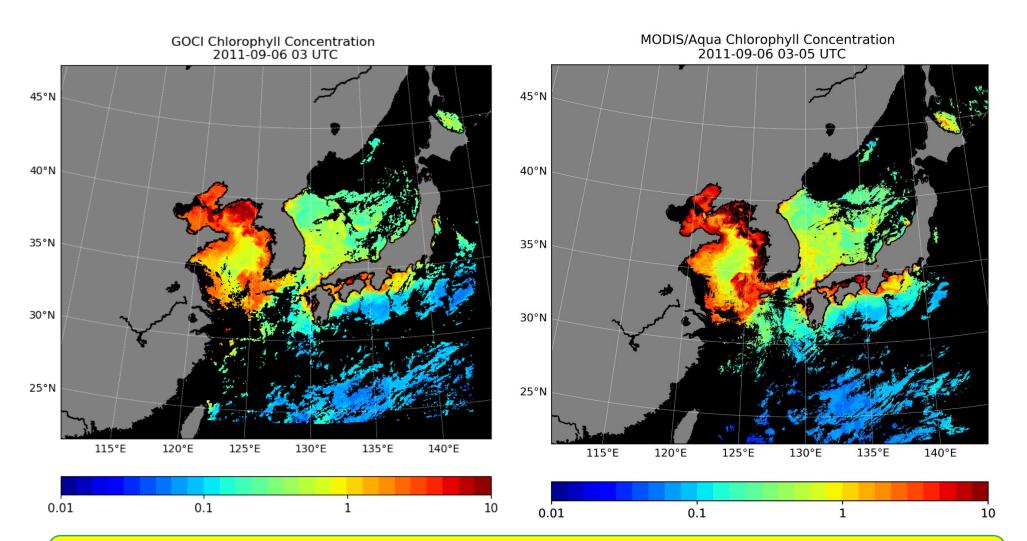

Research results

KIOS 한국해양과학기술원 세계가 주목하는 천리안 해양관촉위성

Comparison between GOCI and MODIS

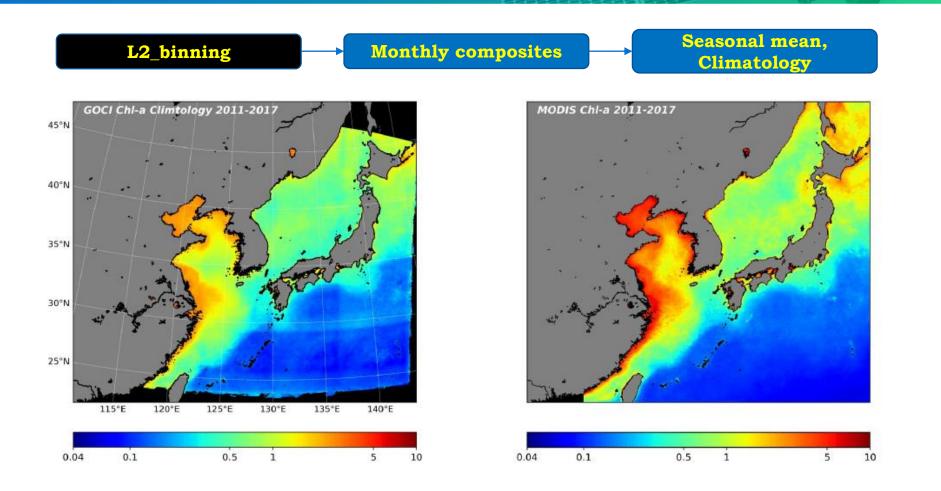
L2 mapping

turbid sediment dominated waters associated with Yangtze River freshwater discharge

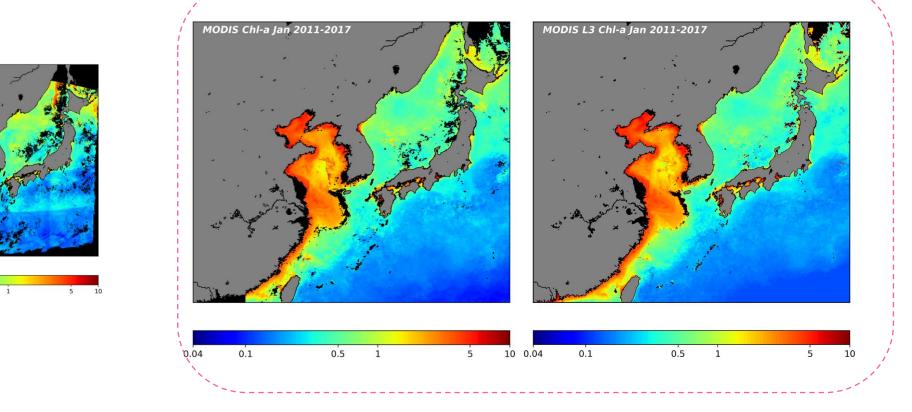


Comparison between GOCI and MODIS

L2 mapping


a reasonable agreement between GOCI and MODIS Chl-a distributions is notable, but some differences in the magnitudes of Chl-a are also found.

GOCI Climatology (7 years)

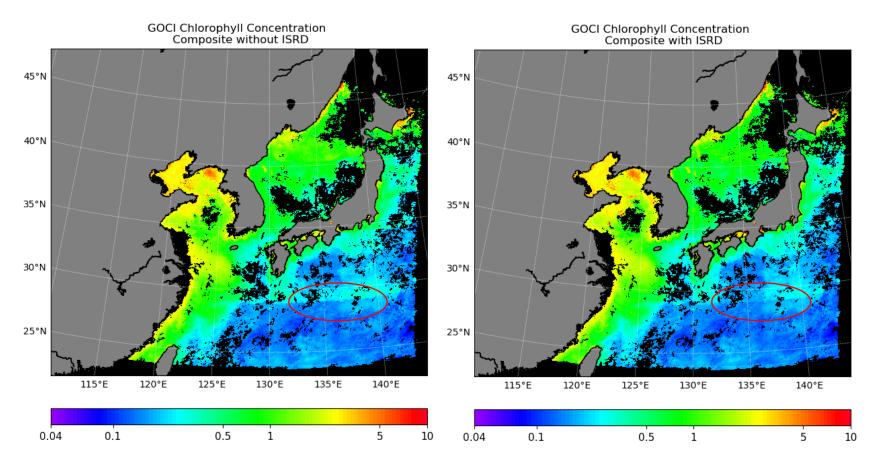

- Significant overestimation of MODIS Chl-a values in comparison to GOCI is obvious along the coastal sea over the Yellow Sea.
- In this turbid ocean environment, uncertainties in ocean color remote sensing remain both satellites dues to issues by atmospheric correction and Chl-a algorithm.

Validating our methodology

 ✓ "GOCI-OC satellite inter-comparison system" using MODIS L2 properly reproduces MODIS L3, which confirming the reliability of our calculation.

OCI Chl-a lan 2011-201

0.5



해양수산부의 세계최초

정지궤도 해색위성

Monthly data calculated from MODIS L2 versus L3

ISRD correction effect (Monthly mean, Dec 2013)

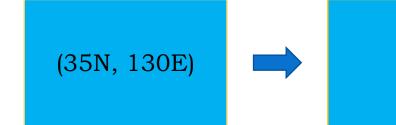
Kim, W., J.-H. Ahn, Y.-J. Park (2015). "Correction of Stray-Light-Driven Interslot Radiometric Discrepancy (ISRD) Present in Radiometric Products of Geostationary Ocean Color Imager (GOCI)." IEEE Transactions on Geoscience and Remote Sensing 53(10): 5458-5472.

About open-source (python) programming

L2_binning, Chl-a Calculation, and Visualization

🔶	Spyder (Python 3.6)
File Edit Search Source Run Debug Consoles Projects Tools View Help	
Editor - D:\#MSPythdn_program.wcoue_zororo.wo_create_gocr_oin_nc_uaiiy_vzor9_0405,py	
1# This program reads GOCI Rrs and Flag information 2# to calculate chl a concentration	
3# man projection	
© 5 import sys	
6 sys.path.insert(0,	
 7 from matplotlib.colors import LogNorm 8 from math import floor 	
9 import · numpy · as · np	
10 from pyproj import Proj	
▲ 11 from mpl_toolkits.basemap import Basemap, cm	
12 from pylab import figure, savefig	
▲ 13 import matplotlib as mp	
14 import matplotlib.pyplot as plt ▲ 15 import mpl toolkits	
lo import datetime	
17 import matplotlib.colors as colors	
18 from affine import Affine	
19 from · netCDF4 · import · Dataset	
21# import GOCI_py_lib 22 import os	
A 23 from f read goci import *	
24 from c_read lonlat import n_lat, n_lon	
25 from f_flag_all import flag	
26 import shutil	
▲ 27 import time ▲ 28 import tracemalloc	
29	
20	

Modules	Usage	
sys	accessing to some variables used or maintained by the interpreter and to functions that interact strongly with the interpreter.	
Numpy	fundamental package for scientific computing with Python	
Proj.pyproj	Performs cartographic transformations between geographic (lat/lon) and map projection (x/y) coordinates	
Datetime	The <u>datetime</u> module supplies classes for manipulating dates and times in both simple and complex ways.	
Dataset.netCDF4	Open, read, and write a Netcdf file	
Shutil	File copy and removing	



L2_binning

38 proj_id·=·'laea' 39 datum·=·'WGS84' 40 lat_0·=·'35.0' 41 lon_0·=·'130.0'

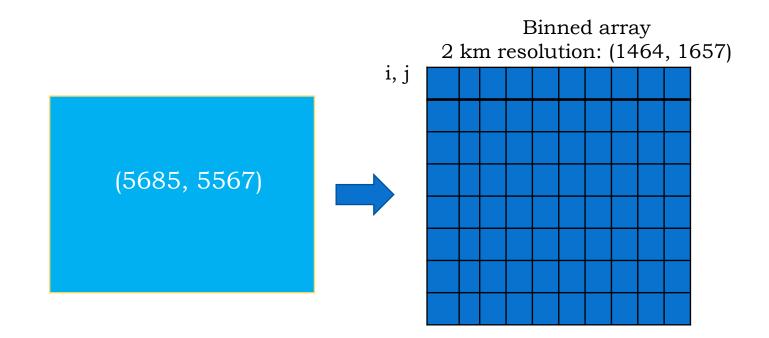
43 resolution == 2000. 44 45 ## convert GOCI lon/lat array to cartesian coordinates 46 area_dict == dict (datum=datum, lat_0=lat_0, lon_0=lon_0, x_1=0, y_1 == 0, proj=proj_id, units= 'm') 47 prj=Proj(area_dict)

> • Conversion of GOCI longitude/latitude arrays to <u>Cartesian coordinate system</u> coordinate (in km)

<pre>>>> n_lor</pre>	n	
array([[111.32442474,	111.33106232, 111.33769989,, 148.66227722,
	148.66891479,	148.67556763],
1	111.3260498 ,	
	148.66729736,	
E I	111.32766724,	111.33430481, 111.34093475,, 148.65904236,
	148.66567993,	148.6723175],
E .	116.41764832,	
	143.5774231 ,	143.58233643],
E I	116.41808319,	
	143.57699585,	
L L	116.41851807,	116.42343903, 116.4283371 ,, 143.57164001,
	143.57655334,	143.58146667]], dtype=float32)
<pre>[>>> n_lat</pre>		
array([[46.99014664,	46.99103546, 46.99192429,, 46.99192429,
_	46.99103546,	46.99014664],
E E	46.98567581,	46.98656464, 46.98745346,, 46.98745346,
_	46.98656464,	46.98567581],
[46.98120499,	46.98209381, 46.98297882,, 46.98297882,
	46.98209381,	46.98120499],
	•••	
L L	21.55286217,	21.55351639, 21.55417252,, 21.55417252,
_	21.55351639,	21.55286217],
L.	21.54824638,	21.54890251, 21.54955864,, 21.54955864,
	21.54890251,	21.54824638],
E E	21.54363251,	21.54428864, 21.54494286,, 21.54494286,
	21.54428864,	21.54363251]], dtype=float32)
>>>		

>>> lon_proj		
array([[-1414212.62986592,	-1413697.94909652,	-1413183.27278737,,
1413181.57533631,	1413696.25165638,	1414212.06405619],
[-1414204.91518489,	-1413690.19526128,	-1413176.04566359,,
1413175.47979768,	1413689.0635367 ,	1414203.7834676],
[-1414197.73886242,	-1413682.97979064,	-1413168.88725866,,
1413167.18951407,	1413681.84796825,	1414196.60704732],
[-1410712.69116666,	-1410200.68309163,	-1409686.29608583,,
1409685.50993334,	1410197.53849239,	1410711.11887242],
[-1410719.39460809,	-1410206.5611639 ,	-1409692.94234717,,
1409691.36998287,	1410204.98880497,	1410718.60843131],
[-1410726.06706007,	-1410211.64326925,	-1409699.60017968,,
1409697.24154422,	1410210.85706011,	1410724.49464717]])
>>> lat_proj		
array([[1471796.44611518,	1471791.79293722,	1471787.17769274,,
1471786.82827408,	1471791.4433911 ,	1471796.32955727],
[1471285.04506912,	1471280.39607452,	1471275.90148408,,
1471275.78501492,	1471280.16305137,	1471284.81196097],
[1470773.75705593,	1470769.11220386,	1470764.2065738 ,,
1470763.85717777,	1470768.87918825,	1470773.52395533],
[-1399258.93682655,	-1399250.38926165,	-1399241.90493522,,
-1399242.00356373,	-1399250.78391895,	-1399259.13422677],
[-1399771.85546958,	-1399763.19548552,	-1399754.61103394,,
-1399754.80828549,	-1399763.39280875,	-1399771.95416701],
[-1400284.5623396 ,	-1400276.09821498,	-1400267.52460887,,
-1400267.82047798.	-1400276.1968738 .	-1400284.7597289911)

(0, 0)


15

신이지 한국해양과학기술원

L2_binning

Used affine module to convert world coordinate to image coordinate.

Visualization: mapping, saving figure, and writing as nc

lat_0 = '35.0'
lon_0 = '130.0'

clevs = logspace(-1.3979400086, 1, 100)
log_norm = colors.LogNorm()
cs = m.contourf(xm_bin,ym_bin,chlor_avg,levels=clevs,cmap='jet', norm=log_norm)
cb = m.colorbar(cs,"bottom", size="5%", pad='10%',ticks=[0.04, 0.1, 0.5, 1, 5, 10])

```
cb.ax.set_xticklabels(['0.04', '0.1', '0.5', '1', '5', '10'], fontsize = 11)
```

```
title = 'MODIS Chl-a '+modis_time.strftime("%b")+' '+str(yr1)+'-'+str(yr2)
ax.text(0.03, 0.96,title, fontsize=12, fontweight='heavy', style = 'italic', transform=ax.transAxes, color = 'white')
fdir = 'F:\\MODIS\\'
plt.savefig(fdir+'MODIS_'+str(yr1)+'-'+str(yr2)+'_climt_'+modis_time.strftime("%b")+'_03-05UTC.png',dpi=400)
plt.close('all')
```

generating nc file

```
f = Dataset(fdir+'MODIS_'+str(yr1)+'-'+str(yr2)+'_climt_'+str(mm).zfill(2)+'_03-05UTC.nc','w',format='NETCDF4')
x = f.createDimension('lon',1657)
y = f.createDimension('lat',1464)
latitude = f.createVariable('latitude', float32, ('lat','lon'), fill_value=9.96921e+36)
longitude = f.createVariable('longitude', float32, ('lat','lon'), fill_value=9.96921e+36)
count_sum = f.createVariable('count_sum', float32, ('lat','lon'), fill_value=9.96921e+36)
array_sum = f.createVariable('array_sum', float32, ('lat','lon'), fill_value=9.96921e+36)
longitude[:,:] = lon
latitude[:,:] = lon
latitude[:,:] = lat
count_sum[:,:] = cnt_sum
array_sum[:,:] = dst_sum
f.cleac()
```

17

f.close()

- **Relatively fast** in reading, calculation, writing using my personal computer
 - ✓ Binning 365 GOCI images takes only several minutes (Python >> IDL)
- Programming and visualization with the same tool
 - ✓ My personal preference (Python = IDL >> Fortan + visualization tool)
- Can make a reasonably good figure only using default python module/library
 - ✓ Not too many extra works are necessary to make a figure fancy (Python >> IDL)
- Free, <u>versatile</u>: easy to transferring the developed algorithm or system to anywhere (but depending on the version of modules)

Issues

Difficulties

• My codes do not work on my Macbook after updating a library.

