Synthetic data sets: hyper- vs multi-spectral

Jianwei Wei (UMASS Boston) and Ryan Vandermeulen (NASA/GSFC)

Consensus:

- 1. The numbers of bands with past and currently operational satellites are not sufficient.
- 2. Hyperspectral R_{rs} measurements (with ~5 nm intervals) have advantages for PFT inversions

Open question:

- 1. Where the multiple bands should be placed?
- 2. Which spectra, a_{ph} and/or R_{rs} , will give rise to representative bands?

Challenge:

1. The data used are by no means exhaustive.

Synthetic data sets: hyper- vs multi-spectral

Jianwei Wei (UMASS Boston) and Ryan Vandermeulen (NASA/GSFC)

Synthetic PFT data

Absorption coefficient

1. A limited number of PFTs are focused:

diatoms, coccolithophores, and cyanobacteria

- 2. Use of measured specific absorption coefficients to derive total absorption:
 - $a_{ph}(\lambda) = CHL_{diatom} \times a^*_{diatom}(\lambda) + CHL_{cocco} \times a^*_{cocco}(\lambda) + CHL_{cyano} \times a^*_{cyano}(\lambda)$
- 3. How well does the culture-based measurements represent in vivo absorption coefficient?

Particulate backscattering coefficient

- 1. Severe lack of in situ b_{bp} measurements
- 2. b_{bp} spectra are assumed by a power-law model, so we have

$$b_{bp}(\lambda) = CHL_{diatom} \times bb^*_{diatom}(\lambda) + CHL_{cocco} \times bb^*_{cocco}(\lambda) + CHL_{cyano} \times bb^*_{cyano}(\lambda)$$

3. But, it is not clear how to assign the spectral shape parameter (η) to the powerlaw function.

Simulation of *R_{rs}* spectra:

1. Hydrolight

Synthetic data sets: hyper- vs multi-spectral

Jianwei Wei (UMASS Boston) and Ryan Vandermeulen (NASA/GSFC)

Questions for the community

- 1. There exist major gaps in the knowledge of the PFT-specific optical properties!!! We need more measurements!!!
- **2.** A representative/comprehensive synthetic data set is needed for PFT algorithm development and testing.
- 3. When will <u>the vertical distribution of IOPs</u> become important for the accuracy of PFT inversion?
- **4.** Hyper-spectral satellite *R_{rs}* data are susceptible to large noise, which may not be neglected for PFT inversion.