

Arctic DOM and POM in Optically Complex Waters

Antonio Mannino

NASA GSFC

Outline

- Background on the coastal Arctic and sources of optical complexity
- Global warming impacts on the Arctic that affect present and future optical complexity
- DOM characteristics of rivers and coastal Arctic
- POM characteristics of rivers and coastal Arctic
- Remote sensing of DOC, CDOM, and SPM
- Remote sensing challenges
- Logistical challenges in collection of *in situ* measurements

Background – Arctic Rivers as source of coastal complexity

• Coastal Arctic as a large relatively contiguous estuary

Background – Arctic Rivers as source of coastal complexity

• Coastal Arctic as a large relatively contiguous estuary

Background - Arctic Rivers as source of coastal complexity

Contiguous flow of a narrow stream of "freshwater" flowing along the coast from the Bering Sea to the Chukchi Sea and to the Beaufort Sea (suggested as a Pan-Arctic phenomena)

Background - Shallow coastal waters

Grebmeier et al. 2015 PacMARS Final Report - North Pacific Research Board

Land north of 60° increase in 1.2°C by 2015 since 1981-2010, 2.8°C increase since 1900.¹

NCEP GFS 2-meter TEMPERATURE ANOMALY [°F] Init: 06Z28MAR2019 —— [78] hr ——> Valid Sun 12Z31MAR2019

Min|Max -23.3° | 43.1°F

¹ Richter-Menge & Mathis 2016

Livingston March 18, 2019; Wash Post

W_XBell^o

> -10 -12 -14 -16 -22 -26 -30 -34 -40

- Land north of 60° increase in 1.2°C by 2015 since 1981-2010, 2.8°C increase since 1900.¹
- Record high temps in permafrost at 20 m depth ¹
- Increase in Tundra greenness & productivity ²
- Declines in snow cover extent in May and June combined with continuing early spring snowmelt¹
- 15% Increase in River Discharge between 2015 and 1980-1989 average for the 6 largest Euro-Asian rivers.
- Peak river discharge shifting earlier in spring
- Record extent of sea ice retreat in late summer
- 0.5 C SST increase per decade in Chukchi Sea & eastern Baffin Bay since 1982.

¹ Richter-Menge & Mathis 2016
 ² Epstein et al. 2018

- Land north of 60° increase in 1.2°C by 2015 since 1981-2010, 2.8°C increase since 1900.¹
- Record high temps in permafrost at 20 m depth ¹
- Increase in Tundra greenness & productivity ²
- Declines in snow cover extent in May and June combined with continuing early spring snowmelt¹
- 15% Increase in River Discharge between 2015 and 1980-1989 average for the 6 largest Euro-Asian
 rivers.
 - Peak river discharge shifting earlier in spring
 - Record extent of sea ice retreat in late summer
 - 0.5 C SST increase per decade in Chukchi Sea & eastern Baffin Bay since 1982.
 - ¹ Richter-Menge & Mathis 2016 ² Epstein et al. 2018

- Land north of 60° increase in 1.2°C by 2015 since 1981-2010, 2.8°C increase since 1900.¹
- Record high temps in permafrost at 20 m depth ¹
- Increase in Tundra greenness & productivity ²
- Declines in snow cover extent in May and June combined with continuing early spring snowmelt¹
- 15% Increase in River Discharge between 2015 and 1980-1989 average for the 6 largest Euro-Asian rivers.
- Peak river discharge shifting earlier in spring
- Record extent of sea ice retreat in late summer
- 0.5 C SST increase per decade in Chukchi Sea & eastern Baffin Bay since 1982.

¹ Richter-Menge & Mathis 2016
² Epstein et al. 2018

Predicted Loss in Permafrost in Alaska by 2050

By 2050, much of this frozen ground, a Alaska's permafrost, shown here in 2010, is no longer permanent. It is starting to thaw. storehouse of ancient carbon, could be gone.

Fountain Aug. 23, 2017; NY Times

Climate Change Impacts

- Thawing permafrost along with changing vegetation will undoubtedly alter the composition and fluxes of nutrients, organic matter and sediments entering nearshore waters and coastal seas.
- >50% increase in mean transport across Bering Strait (2001-2011) could contribute to initiating earlier/further sea ice retreat.
- Sea ice loss during summer (50% by area; 75% by volume)
- Light penetration has increased
 - Higher NPP (1998-2012) esp. within interior shelves (Beaufort and East Siberian; less in Chukchi)
 - Surface sea layer experiencing more warming (e.g., CDOM absorption)
 - Delay in autumn freeze-up
 - Accelerates sea-ice retreat
- All the above resulting in shift in ecosystem structure and function

Climate Change Impacts

- Thawing permafrost along with chan composition and fluxes of nutrients, nearshore waters and coastal seas.
- >50% increase in mean transport acr contribute to initiating earlier/furthe
- Sea ice loss during summer (50% by
- Light penetration has increased
 - Higher NPP (1998-2012) esp. wit Siberian; less in Chukchi)
 - Surface sea layer experiencing m
 - Delay in autumn freeze-up
 - Accelerates sea-ice retreat

- **Benthic** Dominated **Pelagic** Dominated Past Future **Phytoplankton** Ice algae Ice algae Phytoplankton **Zoo-Benthos** plankton **Zoo-Benthos** plankton Seabirds **Diving ducks Pelagic fish Demersal fish Bowhead** Walrus whale **Gray whale** Gray whale, Bearded seal
- All the above resulting in shift in ecosystem structure and function

Moore & Stabeno 2015

Arctic Rivers compared to other Major Rivers

- Arctic rivers are lower in nitrate,
- higher in DOC,
- both low to high in suspended sediments (Euro-Asian vs North American)
- Rivers dilute Arctic Ocean wrt nitrate and phosphate but enrich in DOC and silicate

Arctic Rivers compared to other Major Rivers

 Phenology of river discharge dominated by sharp peak discharge event once ice breaks in rivers in late spring

McClelland et al. 2012

DOM Characteristics

- DOC in North American (Yukon & Mackenzie rivers; ~625 and 415 uM) is on lower end of Euro-Asian rivers (~500 to 915 uM) $\frac{1}{2}$ Pan-Arctic DOC loads of 16.6 Tg C yr⁻¹ (POC = 3.0) ^{1,2} DOC (CDOM) highest in Ob, Yenisey & Lena
- Pan-Arctic DOC loads of 16.6 Tg C yr⁻¹ (POC = 3.0) ^{1,2}
- DOC (CDOM) highest in Ob, Yenisey & Lena
- DOC yields vary by river from 820 (Mackenzie R.) to 2338 kg m⁻² yr⁻¹ (Lena R.; Yukon=1771).¹
- DOC exported from major rivers appears largely modern.³
- Ancient permafrost DOC (>20k yr) microbially degrades quickly (50% in 7 days) with decay rates ~30-200% greater than river DOC.³
- Six major rivers export Biodegradable DOC (2.3 Tg C yr⁻¹ equivalent to 12-18% of annual DOC export) ⁵
- Sea ice melting decreases *a_{CDOM}* and increases scattering in surrounding seawater; high CDOM ¹ Holmes et al. 2012 ² McClelland et al. 2016 terrestrial origin yields 50-60% heat flux into ³ Spencer et al. 2015 ⁴ Mann et al. 2016 surface Arctic Ocean layer compared to clear ⁵ Wickland et al 2012 ⁶ Granskog et al. 2015 waters.⁶

POM Characteristics in the Arctic Rivers-to-Sea

- POC in North American (Yukon & Mackenzie rivers; 145 and 126 uM) is much higher than Euro-Asian rivers (26 to 97 uM) (217 and 201 discharge-normalized compared to 32 to 122).
- PN in Yukon & Mackenzie (13.1 & 10.4 uM) is higher than Euro-Asian rivers (3.3 to 11.5 uM) (19.7 and 16.3 dischargenormalized compared to 3.9 to 16.1).
- Pan-Arctic POC fluxes: 3.0 Tg C yr⁻¹
- Pan-Arctic PN fluxes: 0.33 Tg N yr⁻¹
- Suspended sediments low in Ob, Yenisey, and Lena and very high in Yukon and Mackenzie
- SPM (TSS) not related to CDOM

McClelland et al. 2016

26/08/2011

12/09/2011

Doxaran et al. 2012

Matsuoka et al. 2012

Results from Yukon-Norton Sound System

Sentinel 2B - Rrs665 August 2018

- DOC correlates very well with *a*_{CDOM}
- POC correlates very will with SPM
- SPM exceeds 550 g m⁻³ within the Yukon River delta; compared to the ~300 g m⁻³ measured far upstream at Pilot Station by Arctic-GRO.

NASA Arctic RSWQ project: Hernes, Mannino, Spencer, Tzortziou, Aurin, Grunert, Clark, Novak, Freeman

MODIS-Aqua CDOM spectral slope and link to lignin

- Lignin correlates with CDOM spectral slope (S₂₇₅₋₂₉₅)
- Inter-annual changes in routing of Mackenzie River discharge from eastward to the northwest

S_{275:295} derived from multiple linear regression formulation with Rrs bands

Fichot et al. 2013

Satellite Retrievals of DOC and CDOM

Landsat-8

Mackenzie, June 3rd, 2011 📞

N

5 km

Yenisei River

Spot 5

DOC (mg/L

Igarka

Matsuoka et al. 2017

Challenges in Remote Sensing – some unique to the Coastal Arctic

- Low sun angles (higher air masses and lower signal)
 - Small errors in atmospheric correction magnified at high solar zenith angles
 - Lw comprise <1 to 4.5% of L_t at >70° N (default ac processing set to <70°)

Figure 3.5 Radiance emerging from the sea that reaches the TOA, as defined by Equation 3.10, for several values of the solar zenith angle from 30° to 87°, and b) the percentage contribution of water signature to the TOA. The dashed line in a) is the accepted atmospheric correction algorithm uncertainty.

IOCCG Report No. 16 2015

Challenges in Remote Sensing – some unique to the Coastal Arctic

- Low sun angles (higher air masses and lower signal)
 - Small errors in atmospheric correction magnified at high solar zenith angles
 - Lw comprise <1 to 4.5% of L_t at >70° N (default ac processing set to <70°)
- Complexity of high constituent loading
 - High CDOM and SPM; moderate chlorophylls as turbidity decreases offshore
- Adjacency effects from land and ice
- Pixel contamination from sea ice (and clouds)
- Arctic haze strong absorbing aerosols in April to June
- Forest fires in summer contribute absorbing aerosols to the Beaufort and elsewhere
- Need for high spatial resolution at high SNR along the coast and inland
- Cloud cover "on average ~80% at 60°N during spring, summer, and fall, remains about the same between 60 and 80°N during summer, and decreases to 60% and 70% at 80°N during spring and fall"
- Presence of ice cover from late fall to early spring (cannot see under ice blooms)
- Pigment packaging differs for Arctic phytoplankton; standard algorithms not adequate
- Arctic-specific or regionally tuned algorithms
- Obtain adequate in situ measurements along the coast for algorithm development and for validation

IOCCG Report No. 16 2015

Challenges in Collection of Field Observations

- Remoteness access to sites, resources, wildlife hazards; Ice conditions
- IOP sensors designed/tuned to highly absorbing and scattering waters
 - Shorter pathlengths, higher dynamic range
- Radiometers designed with higher sensitivity for measurements at low sun angles (lower Lw) and for highly absorbing and scattering waters
- Small volume filtration of turbid samples require extra care
 - To homogenize and for accurate volume
- Sampling at peak discharge by boat is dangerous due to high water velocity and presence of ice chunks
 - Helicopters enable water sampling collection and potentially optics
- Shallow waters prevents direct access by larger boats/ships
 - Use of small local boats; large ships/boats that carry small crafts
- River flow gauges (if they exist) are far upstream from the river mouth
- Those working in the coastal Arctic today are overcoming many of these challenges (new/refined optical sensors needed!)

Arctic COLORS Arctic - Coastal Land Ocean Interactions Poster # 69