GOCI-II Lunar Calibration and MTF Plan

Kibeom Ahn, on behalf of Seongick CHO

Korea Ocean Satellite Center KIOST (Korea Institute of Ocean Science & Technology)

해양위성센터

KOREA INSTITUTE OF

Contents

GOCI-II Lunar Calibration and MTF Plan

Introduction of GOCI & GOCI-II

2nd Joint GSICS/IVOS Lunar Calibration Workshop in Xi'an, China, November 13-16, 2017

GOCI-II Lunar Calibration and MTF Plan

Introduction of GOCI

Introduction of GOCI

Geostationary Ocean Color Imager

- GSD(Ground Sampling Distance) : 500m * 500m
- Target Area : 2,500km * 2,500km (Center : 130°E 36°N)
- Included Nations : Korea, China, Japan, Russia, etc.
- Temporal Resolution : 1hour (8 times / day)

					Contraction of the second s
Band	Central wavelengths	Band Width	SNR	Primary Application	
B1	412nm	20nm	1,070	Yellow substance and turbidity	A MARCAN AND A COMPANY
B2	443nm	20nm	1,190	Chlorophyll absorption maximum	1 2 3 4
B3	490nm	20nm	1,170	Chlorophyll and other pigments	8 7 6 5
B4	555nm	20nm	1,070	Turbidity, suspended sediment	0 10 11 12
B5	660nm	20nm	1,010	Baseline of fluorescence signal, Chlorophyll, suspended sediment	
B6	680nm	10nm	870	Atmospheric correction and fluorescence signal	
B7	745nm	20nm	860	Atmospheric correction and baseline of fluorescence signal	
B8	865nm	40nm	750	Aerosol optical thickness, vegetation, water vapor reference over the ocean	

2nd Joint GSICS/IVOS Lunar Calibration Workshop in Xi'an, China, November 13-16, 2017

The next generation, GOCI-II

6

Development of GOCI-II

Radiance : W/m²/µm/sr

GOCI Band	GOCI-II Band	Band center	Bandwidth	Nominal Radiance	Maximum Ocean radiance	Threshold Radiance	Maximum Cloud Radiance	NEdL	SNR @ Nominal radiance
-	1	380 nm	20 nm	93	139.5	143.1	634.4	0.093	998
1	2	412 nm	20 nm	100	150	152	601.6	0.095	1050
2	3	443 nm	20 nm	92.5	145.8	148	679.1	0.081	1145
3	4	490 nm	20 nm	72.2	115.5	116	682.1	0.059	1128
-	5	510 nm	20 nm	64.9	108.5	122	665.3	0.055	1180
4	6	555 nm	20 nm	55.3	85.2	87	649.7	0.049	1124
-	7	620 nm	20 nm	53.3	64.1	65.5	629.5	0.048	1102
5	8	660 nm	20 nm	32	58.3	61	589	0.03	1060
6	9	680 nm	10 nm	27.1	46.2	47	549.3	0.03	914
-	10	709 nm	10 nm	27.7	50.6	51.5	450	0.03	914
7	11	745 nm	20 nm	17.7	33	33	429.8	0.02	903
8	12	865 nm	40 nm	12	23.4	24	343.8	0.015	788
-	13	643.5 nm	483 nm	-	-	-	-	-	-

Field of Regard

KIOS

10

2nd Joint GSICS/IVOS Lunar Calibration Workshop in Xi'an, China, November 13-16, 2017

Advantages of Lunar Calibration

As an on-board calibration light source, the Moon, and lunar calibration have several advantages:

- 1. Optical properties of the Moon as reflective diffuser are very stable in the order of 1*10⁻⁸/year for irradiance, and 1*10⁻⁷/year for radiance (Kieffer 1997).
- 2. On the basis of the Moon visibility among the instruments on different spacecrafts, inter-satellite calibration can be achieved without temporal limitation (no necessity of the Moon observation on same time) (Eplee et al., 2011).
- 3. On-ground characterization such as BSDF characterization of Solar Diffuser is not required.
- 4. Dedicated on-board system is not generally required.

Technical issues of the Moon and lunar calibration of GOCI-II

- 1. Due to the limited observability of the moon and phase angle variation, effective lunar calibration can be generally performed one or two times per month.
- 2. Lunar spectral irradiance model (ex. ROLO) with regarding various corrections factors such as distance among Sun-Moon-Satellite, libration, phase angle, oversampling, and etc. is required.
- 3. In single image acquisition of the Moon, only a portion of pixels implemented on GOCI-II detector can be used for the lunar calibration.
- 4. Reference spectral irradiance of the Moon for single pixel based on ROLO model is under development with early stage. At this moment, ROLO model can only provide the single value of integrated lunar irradiance as sum of radiances over all lunar pixels (IOCCG Report No. 14).

GOCI-II Lunar Calibration and MTF Plar

Feasibility Assessment of Moon Imaging (1/2)

5 Moon imaging criteria with hierarchical priority

- (Priority 1) Moon in GOCI-II FoR (Field of Regard)
 - No spacecraft maneuver (esp. roll maneuver) is planned
- (Priority 2) GOCI-II Nominal Operation Duration - 05:15 ~ 19:45 (KST)

(Priority 3) Moon phase: more than 50% of illuminated area (100% in Full Moon)

- First quarter \rightarrow Waxing gibbous \rightarrow Full Moon \rightarrow Waning gibbous \rightarrow Last quarter
- (Priority 4) Moon imaging time shall not be fully overlapped with the operation time of another payload on GK2B
 - Allocated GOCI-II operation timeline is 15 to 45 min in every hour

(Priority 5) Continuous single observable duration shall be equal to or longer than 10 min per day

Additional criteria regarding image quality of the Moon

(Priority 6) Rejection of Earth straylight Area

- Moon image can be affected by Earth straylight
- Potential Earth straylight region : 1 deg from Earth disk

(Priority 7) Optimum Moon phase angle range for DAMD* monitoring

- Relative uncertainty of ROLO model w.r.t. phase angle : ~1%
- Required determination of optimal phase angle range

(*DAMD : Diffuser Ageing Monitoring Device)

(Jan. 2019)

2nd Joint GSICS/IVOS Lunar Calibration Workshop in Xi'an, China, November 13-16, 2017

13

KIOS

Feasibility Assessment of Moon Imaging (2/2)

Moon imaging timeline in year of 2019

Month in '2019	Observable days for monthly Moon imaging (day)	Observable times for recommended monthly Moon imaging	Start time of recommended monthly Moon imaging (yyyy-mmm-dd hh:mm, KST)	End time of recommended Moon imaging (yyyy-mmm-dd hh:mm, KST)	Observable time for selected Monthly Moon imaging (min, approx.)	
Jan.	2	1	2019-Jan-15 07:15	2019-Jan-15 07:45	30	
Feb.	3	1	2019-Feb-20 13:15	2019-Feb-20 13:45	30	
Mar.	1	2	2019-Mar-20 11:15 2019-Mar-20 12:15	2019-Mar-20 11:36 2019-Mar-20 12:32	38	
Apr.	1	2	2019-Apr-20 12:29 2019-Apr-20 13:15	2019-Apr-20 12:45 2019-Apr-20 13:45	46	
May	1	1	2019-May-18 11:16	2019-May-18 11:45	29	
Jun.	2	1	2019-Jun-14 09:15	2019-Jun-14 09:45	30	
Jul.	2	2	2019-Jul-21 15:15 2019-Jul-21 16:15	2019-Jul-21 15:39 2019-Jul-21 16:30	39	
Aug.	2	2	2019-Aug-17 13:15 2019-Aug-17 14:15	2019-Aug-17 13:45 2019-Aug-17 14:28	43	
Sep.	1	1	2019-Sep-18 15:15	2019-Sep-18 15:45	30	
Oct.	2	1	2019-Oct-11 10:34	2019-Oct-11 10:45	11	
Nov.	4	1	2019-Nov-11 10:32	2019-Nov-11 10:44	12	
Dec.	3	2	2019-Dec-09 09:15 2019-Dec-09 10:15	2019-Dec-09 09:45 2019-Dec-09 10:29	44	

2nd Joint GSICS/IVOS Lunar Calibration Workshop in Xi'an, China, November 13-16, 2017

ROLO model implementation for GOCI-II

GOCI-II lunar calibration procedure

GOCI-II Lunar Calibration

- Because lunar disk observed in single GOCI-II lunar image is only a portion of all detector pixels, and ROLO model can provide the integrated lunar irradiance only, absolute in-orbit calibration to update radiometric gain for each pixel is normally not suitable to lunar calibration.
- ✓ With this technical limitation, lunar ageing factor ($\Delta \rho_{Moon}$) to compensate the degradation of the radiometric performance defined by the lunar calibration can be defined as follows:

$$\Delta \rho_{Moon} = \frac{I_{ROLO}}{I_{GC2}}$$

✓ With lunar aging factor and PRNU (Pixel Response Non-Uniformity), variation of the radiometric performance for each pixel can be assessed.

17

해양위성센터

2nd Joint GSICS/IVOS Lunar Calibration Workshop in Xi'an, China, November 13-16, 2017

G2GS Lunar Calibration Module

GOCI-II Lunar Calibration Module

Algorithm

- Lunar Irradiance Calculation
 - Based on ROLO Model
- Moon Pixel Selection
 - ROI Selection + DN Threshold
 - ROI Selection for Earth Contamination
 - DN Threshold for Extraction of Moon Pixel only
- Interpolation for spacecraft position determination
 - Linear interpolation at Lunar Observation Time

Verification

Using MI/COMS Moon images (provided by KMA)

GOCI-II Lunar Calibration Module - Verification

Calculation of ROLO Irradiance

Contents	Reference	Lunar Calibration Module	P/F
Abs Phase Angle	1.092966255e+00	1.092966255e+00	Pass
ROLO Irradiance	9.644399507e-04	9.644399509e-04	Pass
Reference Irradiance	7.558361117e-04	7.558361120e-04	Pass

Calculation of Lunar Image Irradiance

Contents	Reference	Lunar Calibration Module	P/F
Moon Irradiance	6.897984906e-04	6.897984907e-04	Pass

Slope Factor

Contents	Reference	Lunar Calibration Module	P/F
Slope Factor	9.126297083e-01	9.126297087e-01	Pass

GOCI-II Lunar Calibration and MTF Plar

19

KIOS

2nd Joint GSICS/IVOS Lunar Calibration Workshop in Xi'an, China, November 13-16, 2017

GOCI-II MTF Measurement Plan

GOCI-II MTF Measurement Plan

• MTF Measurement from Moon Image

- Input Moon Image (L0C)
- Output MTF of Moon Image
- Using Lunar Edge as Slant-Edge Source
- Algorithm
 - ① Set a ROI including Lunar Edge
 - 2 Calculate ESF & LSF
 - 3 Calculate MTF

MTF Measurement from Star Image

- Input Star Image (L0C)
- Output MTF of Star Image
- Using Star Image as Point Source
- Algorithm
 - 1 Set a ROI including Star
 - 2 Calculate PSF
 - 3 PSF Normalization
 - (4) Calculate MTF

GOCI-II MTF Measurement Plan

GUI for MTF Measurement

GOCI-II Lunar Calibration and MTF Plan

Conclusion

2nd Joint GSICS/IVOS Lunar Calibration Workshop in Xi'an, China, November 13-16, 2017

Conclusion

- ✓ Technical feasibility of the Moon observation was confirmed
- ✓ Theoretical adaptation of ROLO model is accomplished for GOCI-II
- Prototype implementation of ROLO model for GOCI-II
 Verification using MI/COMS Moon images (provided by KMA)
- ✓ In the next step, followings are planned to be completed with in-depth analysis:
 - Recommendation of the Moon imaging time after the determination of reference phase angle
 - Instrument oriented reference lunar irradiance model
 - Technical Feasibility to implement reference lunar radiance model for each pixel

Thank you for your attention.

Kibeom Ahn (kbahn@kiost.ac.kr) Seongick CHO (sicho@kiost.ac.kr)

Reference Lunar Irradiance

Lunar reflectance (A_k) provided by ROLO model

$$\ln A_k = \sum_{i=0}^3 a_{ik}g^i + \sum_{j=0}^3 b_{jk}\Phi^{2j-1} + c_1\theta + c_2\phi + c_3\Phi\theta + c_4\Phi\phi + d_{1k}e^{-\frac{g}{p_1}} + d_{2k}e^{-\frac{g}{p_2}} + d_{3k}\cos\left[\frac{(g-p_3)}{p_4}\right]$$

whore

where.	
A_k	: disk-equivalent reflectance for each band k
g	: absolute phase angle
θ	: selenographic latitude of GOCI-II
φ	: selenographic longitude of GOCI-II
Φ	: selenographic longitude of the Sun

- Calculated ROLO model(version 311g) coefficients for GOCI-II

Band	Band Center (nm)	a0	a1 (rad ⁻¹)	a2 (rad ⁻²)	a3 (rad ⁻³)	b1 (rad ⁻¹)	b2 (rad ⁻³)	b3 (rad⁻⁵)	d1	d2	d3
B1	380	-2.53875	-1.73218	0.424342	-0.22212	0.034985	0.010926	-0.00362	0.345536	-0.01098	-0.00502
B2	412	-2.34249	-1.74246	0.420812	-0.21495	0.03156	0.013508	-0.00467	0.365353	-0.05816	0.000765
B 3	443	-2.32145	-1.71791	0.375473	-0.19491	0.037671	0.015208	-0.00552	0.376755	-0.09156	0.008859
B4	490	-2.22836	-1.68141	0.371029	-0.1969	0.038784	0.015455	-0.00546	0.366226	-0.09036	0.007187
B5	510	-2.19513	-1.65353	0.336892	-0.18481	0.038616	0.014135	-0.00488	0.368327	-0.09626	0.009814
B6	555	-2.1225	-1.65885	0.383235	-0.20625	0.040559	0.010087	-0.00388	0.372053	-0.10775	0.003567
B7	620	-1.98473	-1.61287	0.336911	-0.19021	0.042679	0.009935	-0.00389	0.371673	-0.12392	0.008829
B 8	660	-1.89995	-1.58457	0.308405	-0.18034	0.043984	0.009842	-0.00389	0.37144	-0.13387	0.012067
B9	680	-1.89178	-1.58316	0.292015	-0.1712	0.044225	0.009463	-0.00369	0.381883	-0.15395	0.015173
B10	709	-1.91429	-1.59811	0.365081	-0.20418	0.044258	0.010299	-0.00396	0.371204	-0.14098	0.004827
B11	745	-1.86933	-1.57541	0.337351	-0.19423	0.039708	0.013156	-0.00463	0.368899	-0.14822	0.009541
B12	865	-1.7458	-1.58485	0.350134	-0.19572	0.041439	0.016106	-0.0055	0.391924	-0.18828	0.009775

GOCI-II Lunar Calibration and MTF Plan

27

Technical Issue

Earth Shine Straylight

- ✓ For the effective lunar calibration, leakage of the Earth shine (i.e. Earth straylight) at Moon imaging of GOCI-II is expected to be analyzed as part of GOCI-II straylight analysis.
- In a next step, minimum distance between the Earth and the Moon to avoid the Earth straylight on the Moon will be provided based on the result of the straylight analysis.

Lunar Radiance Model for each pixel

- ✓ Because the ROLO model can only provide the integrated lunar irradiance at this moment, lunar radiance for each pixel can't be retrieved.
- In order to overcome this technical limitation, a lunar radiance model for each pixel is required.
- ✓ The expected accuracy of the lunar radiance model is about 0.5% for long-term monitoring and about 5% for single lunar image.

GOCI-II Lunar Calibration Module - Verification

Input Image

- MI/ COMS Moon Image (L1A)
 - W_KR-KMA-NMSC,VISNIR+SUBSET+MOON,
 - COMS1+Imager_C_RKSL_20130420225822_01.nc
 - Bands > dc_obs_imgt
 - Image size : 699 X 699 (Unsigned Integer)

28

